Upper (lower) bounds, Maximum (Minimum) elements, Least (Greatest) bounds:

Definition

Let $S \subseteq \mathbb{R}$ be a subset of real numbers. If there is a real numbers *b* such that $x \leq b$ ($x \geq b$) for all $x \in S$, then b is called *an upper (a lower) bound* for *S* and we will say that *S* is bounded above (below) by *b*.

Remark:

- If b is an upper bound for S, then every real number greatest than b will also be an upper bound for S, i.e. if b is an upper bound for S and c ∈ ℝ such that b ≤ c, then c is also an upper bound for S.
- 2. If b is a lower bound for S and $c \in \mathbb{R}$ such that $c \leq b$ then c is also a lower bound for S.

Definition

Let $S \subseteq \mathbb{R}$ be a bounded above subset of real numbers. A real number *b* is called *a least upper bound* for *S* if:

- i. *b* is an upper bound for *S*, and;
- ii. if a real number c is an upper bound for S, then $b \le c$, (i.e. there is no real number less than b can be an upper bound for S).

If *b* is a least upper bound for , we shall denote it by b = Sup S.

Definition

Let $S \subseteq \mathbb{R}$ be a bounded below subset of real numbers. A real number *b* is called *a greatest lower bound* for *S* if :

- i. *b* is a lower bound for *S*, and;
- ii. if a real number c is a lower bound for S, then $c \le b$, (i.e. there is no real number greater than b is a lower bound for S.

If *b* is a greatest lower bound for , we shall denote it by b = Inf S.

Definition

Let $S \subseteq \mathbb{R}$. If *b* is an upper bound for *S* and $b \in S$, then *b* is called *a maximal element* of *S*, i.e. if b = Sup S and $b \in S$, then *b* is said to be *a maximal element* of *S*, and we shall write in this case b = Max S.

Definition

Let $\subseteq \mathbb{R}$. If *b* is a lower bound for *S* and $b \in S$, then *b* is called *a minimal element* of *S*, i.e. if b = Inf S and $b \in S$, then *b* is *a minimal element* of *S*, and we shall write in this case b = Min S.

Completeness axiom:

Every non-empty set of real numbers which is bounded above (bounded below) has a supremum (infimum), i.e. $\exists b \in \mathbb{R} \ni b = Sup S$, (b = Inf S).

Examples:

- The set ℝ⁺ = (0,∞) is unbounded above. It has no upper bounds, no maximal element and no supremum. The real numbers 0 is a lower bound of ℝ⁺ and every real numbers less than 0 is also a lower bound of ℝ⁺. ℝ⁺ has no minimal element, and *Inf* ℝ⁺ = 0.
- 2. S = [0,1] is bounded above by 1 (i.e. 1 is an upper bound for S) and is bounded below by 0 (i.e. 0 is lower bound for S). Sup S = 1 and Inf S = 0. Also Max S = 1, and Min S = 0.

3.
$$S = \{x: (x - a)(x - b)(x - c)(x - d) < 0; a < b < c < d\} = (a, b) \cup (c, d)$$

Note that, a is a lower bound of S (hence any real number less than a is also a lower bound of S). S is bounded below by a. d is an upper bound for S (hence any real number greater than a is also an upper bound of S). S is

bounded above by d. Inf S = a, and S has no minimal element of S. Also Sup S = d, and S has no maximal element of S.

Remark:

Supremum and Infimum of a subset of real numbers are uniquely determined whenever they exist.

Explanation:

Suppose Sup S = b and Sup S = c.

Since Sup S = b, then b is an upper bound of S.

As *b* is an upper bound of *S* and Sup S = c, then $c \le b$.

Also, as Sup S = c, then c is an upper bound of S.

As *c* an upper bound of *S* and Sup S = b, that implies $b \le c$.

Thus, = b, and hence Sup S is uniquely determined if it is exist.

Similarly, we can show that Inf S is uniquely determined if it is exist.

Some properties of the Supremum:

Theorem (Approximation property):

Let $S \subseteq$ be a non-empty subset of real numbers with an upper bound *b*. Then Sup S = b if, and only if, for every $a \leq b$ there is some $a \in S$ such that $a < x \leq b$.

Proof:

Since Sup S = b, hence $x \le b \forall x \in S \dots (*)$

Wanted: $\exists x \in S \exists a < x \leq b$ and from * above we need to show only:

 $\exists x \in S \ \ni a < x \, .$

Suppose $x \le a \quad \forall x \in S$, then *a* is an upper bound for *S*. But *Sup S* = *b* is the least upper bound for *S*. Thus b < a and this is a contradiction.

Therefore, $\exists x \in S \exists a < x \text{ and from (*) above, we deduce that } a < x \le b$.

Conversely, suppose $\forall a < b, \exists x \in S \ni a < x \leq b$. Wanted: Sup S = b.

By contrary, assume that $Sup S \neq b$. That is, $\exists a < b$ such that a is an upper bound of S, i.e. $x \leq a, \forall x \in S$ and this contradicts our assumption above. Thus, Sup S = b.

Theorem (Additive property):

Let $A, B \subseteq \mathbb{R}$, be non-empty subsets of real numbers and let $C = \{x + y \in \mathbb{R} : x \in A, y \in B\}$. If each of *A* and *B* has a supremum, then *C* has a supremum and Sup C = Sup A + Sup B.

Proof:

Let Sup A = a, Sup B = b. If $z \in C$, then $\exists x \in A$ and $y \in B$ such that z = x + y. Since Sup A = a, Sup B = b, hence $x \leq a$ and $y \leq b$ and that implies $x + y \leq a + b \Rightarrow z \leq a + b$.

Therefore a + b is an upper bound of *C* and the Supremum of *C* exists, say c = Sup C. Therefore, $c \le a + b$, i.e. $Sup C \le Sup A + Sup B$.

To show that c = a + b (i.e. Sup C = Sup A + Sup B.), we need to show that a + b satisfied the approximation property for supremum.

So, assume $\epsilon > 0$. Thus, $a - \frac{\epsilon}{2} < a = Sup A$ and $b - \frac{\epsilon}{2} < b = Sup B$.

From the approximation property for supremum, we imply that;

 $\exists x \in A \text{ and } \exists y \in B \ni a - \frac{\epsilon}{2} < x \le a \text{ and } -\frac{\epsilon}{2} < y \le b.$ Since $a - \frac{\epsilon}{2} < x$ and $b - \frac{\epsilon}{2} < y \Rightarrow a + b - \epsilon < x + y \le a + b.$ But $+y = z \in C \ni a + b - \epsilon < z \le a + b.$ Therefore, SupC = a + b. $\Rightarrow SupC = SupA + SupB$

Theorem (Comparison property):

Let $A, B \subseteq \mathbb{R}$ be non-empty subsets of real numbers such that $x \leq y$ for every $x \in A$ and $y \in B$. If B has a Supremum, then A has Supremum and $up A \leq Sup B$.

<u>Proof:</u>

Suppose that *B* has a supremum, say Sup B = b, then $y \le b \forall y \in B$.

But $x \le y \ \forall x \in A$ and $y \in B$, so $x \le b \ \forall x \in A$ and that implies b is an upper bound for A. From completeness axiom Sup A exists, say a=Sup A. Since b is an upper bound for A and a = Sup A, thus $a \le b$, i.e. Sup $A \le Sup B$.

As a home work prove the following properties of the infimum: Theorem (Approximation property):

Let $S \subseteq \mathbb{R}$ be a non-empty set of real numbers with a lower bound *b*. Then b = Inf S if, and only if, for every a > b there is some $x \in S$ such that $\leq x < a$.

Theorem (Additive property):

Let $A, B \subseteq \mathbb{R}$ be non-empty subsets of real numbers and let $C = \{x + y : x \in A, y \in B\}$. If each of A and B has an infimum, then C has an infimum and Inf C = Inf A + Inf B.

Theorem (Comparison property):

Let $A, B \subseteq \mathbb{R}$ be non-empty subsets of real numbers such that $x \leq y$, for every $x \in A$ and $y \in B$. If A has a infimum, then B has infimum and $Inf A \leq Inf B$.

Theorem (Archimedean Property of the field of real numbers \mathbb{R}):

The set of real numbers \mathbb{R} is unbounded above, i.e. if $x \in \mathbb{R}$, there exists $n \in \mathbb{N}$ such that x < n.

Proof:

Let $x \in \mathbb{R}$. By contrary assume there is no $n \in \mathbb{N}$ such that x < n, i.e. $n \le x, \forall n \in \mathbb{N}$. Thus, x is an upper bound of N. Therefore, N has a supremum say $y = Sup\mathbb{N}$. Since y - 1 < y, hence there exists $m \in \mathbb{N} \ni y - 1 < m$, as an application of the approximation property of $y = Sup\mathbb{N}$. Then, y < m + 1,

i.e. $\exists m + 1 \in \mathbb{N} \quad \exists y = Sup\mathbb{N} < m + 1$ and this contradicts the assumption that y is an upper bound of N. Therefore, \mathbb{R} is unbounded above.

Exercises:

- **1.** Let $x, y \in \mathbb{R}$ be positive real numbers. Then:
 - **a.** $\exists n \in \mathbb{N} \ni x < ny$.

b.
$$\exists n \in \mathbb{N} \ni 0 < \frac{1}{n} < y$$
.

- c. $\exists n \in \mathbb{N} \ni n 1 \le y < n$.
- **2.** Let $x, y \in \mathbb{R}$. Then:
 - **a.** $\exists r \in \mathbb{Q} \ni x < r < y$, (The Density theorem of the rational numbers).
 - **b.** $\exists z \in \mathbb{Q}^c \ni x < z < y$, (The Density theorem of the irrational numbers).

Euclidean space \mathbb{R}^n

When n = 1, a point in \mathbb{R} is a real number.

When = 2, a point in two dimensional space $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ is an ordered pair of real numbers (x_1, x_2) .

When n = 3, a point in three-dimensional space $\mathbb{R}^3 = \mathbb{R} \times \mathbb{R} \times \mathbb{R}$ is a triple of real numbers (x_1, x_2, x_3) .

In general, a point in *n*-dimensional space $\mathbb{R}^n = \mathbb{R} \times \mathbb{R} \times ... \times \mathbb{R}$ is an ordered **n-tuple** of real numbers $(x_1, x_2, ..., x_n)$. The real number x_k is called the *k*-th coordinate of the point $(x_1, x_2, ..., x_n)$.

Definition

Let $x = (x_1, x_2, ..., x_n)$ and $y = (y_1, y_2, ..., y_n)$ be two points in \mathbb{R}^n and $c \in \mathbb{R}$, We define:

- i. Equality: $x = y \Leftrightarrow x_1 = y_1$, $x_2 = y_2$, ..., $x_n = y_n$.
- ii. Sum: $x + y = (x_1 + y_1, x_2 + y_2, ..., x_n + y_n)$
- iii. Multiplication by real numbers (scalars):

$$cx = c(x_1, x_2, ..., x_n) = (cx_1, cx_2, ..., cx_n)$$

iv. Difference: $x - y = (x_1 - y_1, x_2 - y_2, ..., x_n - y_n)$

- **v.** Origin (zero vector): 0 = (0, 0, ..., 0)
- vi. Inner product (dot product):

$$x. y = x_1. y_1 + x_2. y_2 + \dots + x_n. y_n$$

 $x. y = \sum_{i=1}^n x_k. y_k$

vii. Norm (length): $||x|| = \sqrt{x \cdot x} = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$. For n = 1;

For n = 2;

For n = 3;

viii. the norm ||x - y|| is called the distance between $x = (x_1, x_2, ..., x_n)$

Remark :

 $(\mathbb{R}^n, +, .)$ is a vector space over the filed \mathbb{R} .

Properties of the norm:

- Let = (x_1, x_2, \dots, x_n) , $y = (y_1, y_2, \dots, y_n) \in \mathbb{R}^n$. Then
- **a)** $||x|| \ge 0$ and $||x|| = 0 \Leftrightarrow x = 0$.
- **b)** ||cx|| = |c|||x|| for any $c \in \mathbb{R}$, where |c| denotes the absolute value of *c*.
- c) ||x y|| = ||y x||.
- d) Cauchy Schwartz inequality: $|x y| \le ||x|| ||y||$.
- e) *Triangle inequality*: $||x y|| \le ||x|| + ||y||$, sometimes the triangle inequality written in the form.

$$||x - y|| \le ||x - z|| + ||z - y||.$$

f) $||x - y|| \ge |||x|| - ||y|||$.

Metric spaces:

Definition:

A matric space is a pair (M, d) consists of a non-empty set M and a real valued function $d: M \times M \to \mathbb{R}$ called a *metric function* or *distance function*, satisfying the following properties: for any $x, y, z \in M$.

$$M_1: d(x, y) \ge 0.$$

$$M_{2}: d(x, y) = 0 \Leftrightarrow x = y.$$

$$M_{3}: d(x, y) = d(y, x).$$

$$M_{4}: d(x, z) \leq d(x, y) + d(y, z).$$

Remark:

- 1. The real number d(x, y) is called *the distance* from x to y.
- 2. The properties (M_1) and (M_2) are state that the distance from any point to another is never negative, and that the distance from a point to itself is zero.
- The property (M₃) states that the distance from a point x to a point y is the same as the distance from y to x.
- 4. The property (M_4) is called *the triangle inequality*, because if x, y and z are not collinear points in the plane $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ as shown in the following figure

Then M_4 states that, the length d(x, z) of one side of the triangle is less than to the sum d(x, y) + d(y, z) of the lengths of the other two sides of the triangle. Moreover, if x, y and z are collinear points in the plane as shown in the following figure:

Then, d(x, z) = d(x, y) + d(y, z)

Example of metric spaces:

Example 1:

let $M = \mathbb{R}^n$, $n \ge 1$ and let $d: M \times M \to \mathbb{R}$ be a function defined by;

$$d(x, y) = ||x - y||, \ \forall x, y \in M;$$

where $||x - y|| = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2}$
 $= \sqrt{\sum_{i=1}^n (x_i - y_i)^2}.$

Clearly, the function *d* above is a metric on *M* called *the Euclidean metric* and in fact the pair $(M, d) = (\mathbb{R}^n, \|.\|)$ is called *the Euclidean space*. *Remark*:

1) If
$$n = 1 \Rightarrow d(x, y) = |x - y| \forall x, y \in \mathbb{R}$$
.
2) If $n = 2 \Rightarrow d(x, y) = ||x - y||$
 $= \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2};$
 $\forall (x_1, x_2), (y_1, y_2) \in \mathbb{R}^2$.
3) If $n = 3 \Rightarrow d(x, y) = ||x - y||$
 $= \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + (x_3 - y_3)^2}$
 $\forall (x_1, x_2, x_3), (y_1, y_2, y_3) \in \mathbb{R}^3.$

Exercise: Prove the *Murkowski's inequality:*- For $p \ge 1$

$$\sqrt[p]{\sum_{i=1}^{n} |x_i + y_i|^p} \le \sqrt[p]{\sum_{i=1}^{n} |x_i|^p} + \sqrt[p]{\sum_{i=1}^{n} |y_i|^p}.$$

To show that, $(\mathbb{R}^n, ||.||)$ is a metric space, let;

$$x = (x_1, x_2, \dots, x_n), y = (y_1, y_2, \dots, y_n) \in \mathbb{R}^n.$$

(*M*₁): From the definition of $d(x, y) = ||x - y|| = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$, hence the rang of the function $d: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ is equal to $[0, \infty)$. Thus, $d(x, y) \ge 0$. $\forall x, y \in \mathbb{R}^n$.

$$(\boldsymbol{M}_2): \ d(x, y) = 0 \Leftrightarrow ||x - y|| = 0 \Leftrightarrow \sqrt{\sum_{i=1}^n (x_i - y_i)^2} = 0;$$

$$\Leftrightarrow \sum_{i=1}^{n} (x_{i} - y_{i})^{2} \Leftrightarrow (x_{i} - y_{i})^{2} = 0 \Leftrightarrow x_{i} - y_{i} = 0 \Leftrightarrow x_{i} = y_{i}, \forall i = 1, ..., n \Leftrightarrow x_{1} = y_{1}, x_{2} = y_{2}, ..., x_{n} = y_{n} \Leftrightarrow x = y.$$

$$(M_{3}): d(x, y) = ||x - y|| = \sqrt{\sum_{i=1}^{n} (x_{i} - y_{i})^{2}} = \sqrt{\sum_{i=1}^{n} (-(y_{i} - x_{i}))^{2}}$$

$$= \sqrt{\sum_{i=1}^{n} (y_{i} - x_{i})^{2}} = ||y - x|| = d(y, x).$$

$$(M_{4}): d(x, z) = ||x - z|| = \sqrt{\sum_{i=1}^{n} ((x_{i} - y_{i}) + (y_{i} - z_{i}))^{2}}$$

$$\le \sqrt{\sum_{i=1}^{n} (x_{i} - y_{i})^{2}} + \sqrt{\sum_{i=1}^{n} (y_{i} - z_{i})^{2}};$$

$$= ||x - y|| + ||y - z|| = d(x, y) + d(y, z).$$

Therefore $(\mathbb{R}^n, \|.\|)$ is a metric space.

Example (2):

Let *M* be a non-empty set and let $d: M \times M \to \mathbb{R}$ be a function defined by

$$d(x,y) = \begin{cases} 0 & if \ x = y \\ 1 & if \ x \neq y \end{cases}.$$

Then d is a metric function on M and hence (M, d) is a metric space called the discrete metric space.

<u>Sol. :</u>

Let
$$x, y, z \in M$$
,
 (M_1) : Since $d(x, y) = 0$ if $x = y$ and $d(x, y) = 1$ if $x \neq y$. Therefore,
 $d(x, y) \ge 0, \forall x, y \in M$.
 (M_2) : $d(x, y) = 0 \Leftrightarrow x = y$
 (M_3) : $d(x, y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases} = \begin{cases} 0 & \text{if } y = x \\ 1 & \text{if } y \neq x \end{cases} = d(y, x)$
 (M_4) : We have the following cases:

- i. $x = y, x \neq z$ (*i.e.* $y \neq z$) Since $1 \le 0 + 1 \Rightarrow d(x, z) \le d(x, y) + d(y, z)$.
- ii. $x = z, y \neq z$ (i.e. $y \neq x$) since $0 \le 1 + 1 \Rightarrow d(x, z) \le d(x, y) + d(y, z)$.

iii.
$$z = y, x \neq y (i.e. x \neq z)$$

since $1 \le 1 + 0 \Rightarrow d(x, z) \le d(x, y) + d(y, z)$.
iv. $x = y = z$
since $0 \le 0 + 0 \Rightarrow d(x, z) \le d(x, y) + d(y, z)$
v. $x \neq y \neq z$

since
$$1 \le 1 + 1 \Rightarrow d(x, z) \le d(x, y) + d(y, z)$$
.

Hence $(x, z) \le d(x, y) + d(y, z), \forall x, y, z \in M$.

Therefore, (M, d) is a metric space.

Example (3):

Let (M, d) be a metric space. Define a function $e: M \times M \to \mathbb{R}$ by:

$$e(x, y) = Min\{1, d(x y)\};$$

for any $x, y \in M$. Therefore (M, e) is a metric space.

<u>Sol .:</u>

Let $x, y, z \in M$.

 (M_1) : Since, either e(x, y) = 1, (hence e(x, y) > 0) or e(x, y) = d(x, y), (hence $e(x, y) \ge 0$). Therefore, $e(x, y) \ge 0$.

 $(\mathbf{M}_2): e(x, y) = 0 \Leftrightarrow Min\{1, d(x, y)\} = 0 \Leftrightarrow d(x, y) = 0 \Leftrightarrow x = y.$

 $(M_3): e(x, y) = Min\{1, d(x, y)\} = Min\{1, d(y, x)\} = e(y, x).$

 (M_4) : Note that, in general, $e(x, y) = Min\{1, d(x, y)\} \le 1, \forall x, y \in M$.

Wanted: $e(x, z) \le e(x, y) + e(y, z)$. We have the following cases:

- i. Suppose either, e(x,y) = 1 or e(y,z) = 1. To be definite, suppose e(x,y) = 1. We have that, in general (x,z) ≤ 1 ∀x, z ∈ M ⇒ e(x,z) ≤ 1 ≤ 1 + e(y,z) = e(x,y) + e(y,z). Similarly, if we suppose e(y,z) = 1, we can deduce that the triangle inequality is hold.
- ii. Suppose both e(x, y) < 1 and $e(y, z) < 1 \Rightarrow e(x, y) = d(x, y)$ and e(y, z) = d(y, z). Note that;

$$e(x, z) = Min\{1, d(x, z)\} \le d(x, z) \le d(x, y) + d(y, z)$$

$$= e(x, y) + e(y, z).$$

$$\Rightarrow e(x, z) \le e(x, y) + e(y, z).$$

Therefore, (M, e) is a metric space.

Example (4):

Let (M, d) be a metric space. Define a function $e: M \times M \to \mathbb{R}$ as:

$$e(x, y) = \frac{d(x, y)}{1+d(x, y)}, \forall x, y \in M.$$

Then, (*M*, *e*) is a metric space.

<u>Sol.:</u>

Let
$$x, y, z \in M$$
.
 (M_1) : Since $d(x, y) \ge 0$, then clearly $e(x, y) \ge 0$.
 (M_2) : $e(x, y) = 0 \Leftrightarrow \frac{d(x, y)}{1+d(x, y)} = 0 \Leftrightarrow d(x, y) = 0 \Leftrightarrow x = y$.
 (M_3) : $e(x, y) = \frac{d(x, y)}{1+d(x, y)} = \frac{d(y, x)}{1+d(y, x)} = e(y, x)$, since (M, d) is a metric space
 (M_4) : Wanted: $e(x, z) \le e(x, y) + e(y, z)$.
Note that, $\frac{d(x, y)}{1+d(x, y)+d(y, z)} \le \frac{d(x, y)}{1+d(x, y)} = e(x, y)$ and;
 $\frac{d(y, z)}{1+d(x, y)+d(y, z)} \le \frac{d(y, z)}{1+d(y, z)} = e(y, z)$.

Since (M, d) is a metric space, hence $d(x, z) \le d(x, y) + d(y, z)$ and we have the following;

$$e(x,z) = \frac{d(x,z)}{1+d(x,z)} \le \frac{d(x,y)+d(y,z)}{1+d(x,y)+d(y,z)}$$

= $\frac{d(y,z)}{1+d(x,y)+d(y,z)} + \frac{d(x,y)+d(y,z)}{1+d(x,y)+d(y,z)} \le \frac{d(x,y)}{1+d(x,y)} + \frac{d(y,z)}{1+d(y,z)}$
= $e(x,y) + e(y,z) \Rightarrow e(x,z) \le e(x,y) + e(y,z)$

Therefore, (M, e) is a metric space.

Definition (Metric subspace):

Let (M, d) be a metric space and let S be a non-empty subset of M. Then (S, d) is also a metric space with the same metric d or more precisely, with the

restriction of d on $S \times S$, $d = d_{S \times S} \\ \vdots \\ S \times S \to \mathbb{R}$, as metric. We call (S, d) a metric subspace of (M, d).

Examples:

Example 1:

Let (M, d) be a metric space, where $M = \mathbb{R}$ and d(x, y) = |x - y|, $\forall x, y \in M$. Let $S = \mathbb{Q}$, the set of rational numbers. Then (S, d) is a matric subspace of (M, d), i.e. $(\mathbb{Q}, |.|)$ is a metric subspace of $(\mathbb{R}, |.|)$.

Example 2:

Let (\mathbb{R}^2, d) be the Euclidean space, where;

$$d(x, y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}, \forall (x_1, x_2), (y_1, y_2) \in \mathbb{R}^2.$$

Define another metric $d: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ on \mathbb{R}^2 as;

$$d(x, y) = \sqrt{(x_1 - y_1)^2 + 4(x_2 - y_2)^2}, \ \forall (x_1, x_2), (y_1, y_2) \in \mathbb{R}^2.$$

Note that, (\mathbb{R}^2, d) is not a metric subspace of (\mathbb{R}^2, d) , because the metric d is different from d.

Point-Set topology in metric spaces

Definition (Open ball):

Let (M, d) be a metric space and let $a \in M$. An open ball B(a; r) with center a and radius r is defined by:

$$B_M(a; r) = \{x \in M \mid d(x, a) < r\}.$$

Remark:

If (S, d) is a metric subspace of a metric space (M, d) and $a \in S$, then the open ball $B_s(a; r)$ of S is given by:

$$B_S(a;r) = S \cap B_M(a;r).$$

Example 1: Consider the Euclidean metric space $(\mathbb{R}^n, d), n \ge 1$, where;

$$d(x, y) = ||x - y|| = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}, \forall (x_1, x_2, ..., x_n), (y_1, y_2, ..., y_n) \in \mathbb{R}^n$$

Let $a = (a_1, a_2, ..., a_n) \in \mathbb{R}^n$ and r > 0, therefore, $B(a; r) = \{x \in \mathbb{R}^n : d(x, y) < r\} = \{x \in \mathbb{R}^n : ||x - a|| < r\}$ $= \left\{x \in \mathbb{R}^n : \sqrt{\sum_{i=1}^n (x_i - a_i)^2} < r\right\}$ $= \{x \in \mathbb{R}^n : (x_1 - a_1)^2 + (x_2 - a_2)^2 + \dots + (x_n - a_n)^2 < r^2\}$

Observe that;

i. When n = 1, (\mathbb{R} , d) is the Euclidean metric space, where;

$$d(x, y) = |x - y|, \forall x, y \in \mathbb{R}$$

In this case;

$$B_M(a;r) = \left\{ x \in \mathbb{R} : \sqrt{(x-a)^2} < r \right\}.$$

= { $x \in \mathbb{R} : |x-a| < r$ } = { $x \in \mathbb{R} : -r < x - a < r$ }
= { $x \in \mathbb{R} : a - r < x < a + r$ } = ($a - r$, $a + r$).

Hence, in the Euclidean metric space $(\mathbb{R}, |.|)$, the open balls are open intervals.

$$\underbrace{\overset{a-r}{\underbrace{}_{r}} \overset{a}{\underbrace{}_{r}} \overset{a+r}{\underbrace{}_{r}} \xrightarrow{a}}_{r} \xrightarrow{a}$$

ii. When n = 2, (\mathbb{R}^2, d) is the Euclidean metric space, where;

$$d(x, y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}, \forall (x_1, x_2), (y_1, y_2) \in \mathbb{R}^2$$

In this case,

$$B_M(a;r) = \{x \in \mathbb{R}^2 : (x_1 - a_1)^2 + (x_2 - a_2)^2 < r^2\} = \text{Open circular disk.}$$

iii. When n = 3, (\mathbb{R}^3 , d) is the Euclidean metric space, where;

$$d(x, y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + (x_3 - y_3)^2},$$

$$\forall (x_1, x_2, x_3), (y_1, y_2, y) \in \mathbb{R}^3.$$

In this case,

$$B_M(a;r) = \{x \in \mathbb{R}^2 : (x_1 - a_1)^2 + (x_2 - a_2)^2 + (x_3 - a_3)^2 < r^2\}$$

= Open solid sphere.

Example 2:

Let $M = \mathbb{R}^2$ with the following three metrics spaces on M that given by:

i.
$$d(x, y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$$
, $\forall (x_1, x_2), (y_1, y_2) \in \mathbb{R}^2$.

ii.
$$d_1(x; y) = Max\{|x_1 - y_1|, |x_2 - y_2|\}, \forall (x_1, x_2), (y_1, y_2) \in \mathbb{R}^2$$

iii. $d_2(x; y) = |x_1 - y_1| + |x_2 - y_2|, \forall (x_1, x_2), (y_1, y_2) \in \mathbb{R}^2$.

If $a \in \mathbb{R}^2$ and r > 0, we can draw the shape of the open ball B(a; r) in \mathbb{R}^2 with respect to each of the above metrics as shown in the following figures:

Definition (interior point):

Let (M, d) be a metric space and let $\emptyset \neq S \subseteq M$. A point $a \in S$ is called *interior point* of *S* if, and only if, $\exists r > 0$ such that $B_M(a; r) \subseteq S$.

Definition (open set):

Let (M, d) be a metric space. A non-empty subset S of M is said to be open in M if, and only if, all points of S are interior points of .

Definition (interior of set):

The set of all interior points of S is called *the interior of S* and denoted by either S° or nt(S).

Remark: In general, $S^{\circ} \subseteq S$.

Example 1: Find the interior of the following sets:

1. In the Euclidean space $(\mathbb{R}, |.|)$:

A = [-3,5], B = (1,4], C = (5,8) $D = \{5\}$ $E = \mathbb{Z}$. $A^{\circ} = (-3,5)$. Note that, for every r > 0, we have $B(-3;r) = (-3 - r, -3 + r) \notin A$. This shows that -3 is not an interior point of A. i.e. $-3 \notin A^{\circ}$. Similarly, $5 \notin A^{\circ}$. Deduce that, $B^{\circ} = (1,4)$, $C^{\circ} = (5,8)$, $D^{\circ} = \emptyset$ and $E^{\circ} = \emptyset$.

2. In the Euclidean space $(\mathbb{R}^2, ||.||)$.

$$A = \{(x, y): x = y\}, B = \{(x, y): x \ge 0, y \ge 0\},$$

$$C = \{(x, y): x^{2} + y^{2} = 1\}, D = \{(x, y): x^{2} + y^{2} \ge 1\}$$

$$E = \{(x, y): x^{2} + y^{2} < 1\}$$

$$A^{\circ} = \emptyset, B^{\circ} = \{(x, y): x \ge 0, y \ge 0\}, C^{\circ} = \emptyset,$$

$$D^{\circ} = \{(x, y): x^{2} + y^{2} \ge 1\}, F^{\circ} = F.$$

Exercises:

- 1) In a metric space (M, d), show that both \emptyset and M are open sets in M.
- 2) In a metric space (M, d), show that every open ball B_M(a; r) is an open set in M.
- 3) In a discrete metric space (M, d), show that every subset S of M is open set in M.
- 4) In a metric space S = [0,1] of the Euclidean space (ℝ, ||), show that every interval of the form [0, x) or (x,1], where 0 < x < 1, is an open set in S. Are these sets open in ℝ? explain that.

Proof 2:

Wanted: $B_M(a; r)$ open set in M.

Let $b \in B_M(a; r)$, we need to show *b* is an interior point of $B_M(a; r)$, i.e. wanted: $\exists \delta > 0$ such that $B_M(b; \delta) \subseteq B_M(a; r)$.

Since $b \in B_M(a; r)$, hence d(b, a) < r.

Let $= Min\{d(b, a), r - d(b, a)\}$. Thus $\delta > 0$ and we will show that $B_M(b; \delta) \subseteq B_M(a; r)$. Let $x \in B_M(b; \delta)$, wanted: $x \in B_M(a; r)$, i.e. we need to show d(x, a) < r.

Since $x \in B_M(b; \delta)$, hence $d(x, b) < \delta$ and by using the triangle inequality we have; $d(x, a) \le d(x, b) + d(b, a) \Longrightarrow d(x, a) < \delta + d(b, a) \dots (*)$.

1. If $\delta = d(b, a) \implies \delta < r - d(b, a)$, then by recalling (*) we have;

$$d(x,a) < \delta + d(b,a) < r - d(b,a) + d(b,a) = r$$
$$\Rightarrow d(x,a) < r$$

2. If $\delta = r - d(b, a)$, then (*) implies that;

$$d(x,a) < \delta + d(b,a) < r - d(b,a) + d(b,a) = r$$
$$\Rightarrow d(x,a) < r$$

Therefore, $B_M(b; \delta) \subseteq B_M(a; r)$ and $B_M(a; r)$ is an open set in .

Proof 3:

Wanted : S open in M. Let $x \in S$, we need to show that: $\exists r > 0$ such that $B_M(b;r) \subseteq S$.

Choose $r = \frac{1}{2} > 0$, therefore;

$$B_M\left(x;\frac{1}{2}\right) = \left\{y \in M : d(y,x) < \frac{1}{2}\right\}$$
$$= \left\{y \in M : d(y,x) < 0\right\}$$
$$= \left\{y \in M : y = x\right\} = \left\{x\right\}.$$
$$\Rightarrow B_M\left(x;\frac{1}{2}\right) = \left\{x\right\}.$$
Since $x \in S \Rightarrow \left\{x\right\} \subseteq S \implies B_M\left(x;\frac{1}{2}\right) \subseteq S.$

Hence S is an open set in M.

The important point to note here,

- **i.** In the discrete metric space every singleton is an open ball and from exercise (2) above, we have every singleton is an open set.
- ii. There are many metric spaces satisfied the property; "every singleton is an open set". As a home work prove that: If $M = \{x_1, x_2, ..., x_n\}$ is a finite set and $d: M \times M \to \mathbb{R}$ be any metric function can be defined on M, then the metric space (M, d) satisfied the property "every singleton is an open set".

Proof 4:

We know that, if $B_M(a; r)$ is an open ball in a metric space (M, d), then $B_S(a; r) = S \cap B_M(a; r)$ is an open ball in the metric subspace (S, d). Note that, $B_{\mathbb{R}}(0; x) = (-x, x)$ is an open ball in \mathbb{R} , $\forall 0 < x < 1$. $\Rightarrow B_S(0; x) = S \cap B_{\mathbb{R}}(0; x) = [0,1] \cap (-x, x) \ (\forall 0 < x < 1)$ $= [0, x) \ (\forall 0 < x < 1).$

 $\Rightarrow B_S(0; x) = [0, x)$ is an open ball in the metric subspace *S*, and since each open ball is an open set, therefore [0, x) is open set in the metric subspace *S* for all 0 < x < 1.

Similarly, $B_{\mathbb{R}}(1; x) = (1 - x, 1 + x)$ is an open ball in \mathbb{R} ($\forall 0 < x < 1$).

$$\Rightarrow B_{S}(1;x) = [0,1] \cap B_{\mathbb{R}}(1;x) = [0,1] \cap (1-x,1+x) \ (\forall \ 0 < x < 1)$$
$$= (1-x,1]$$

Note that , as $0 < x < 1 \implies -1 < -x < 0 \implies 0 < 1 - x < 1$

$$\Rightarrow B_S(1; x) = (\dot{x}, 1], \qquad \forall \ 0 < \dot{x} < 1$$

 \Rightarrow (\dot{x} , 1], ($\forall 0 < \dot{x} < 1$) is an open set in the metric subspace S.

Remark:

Form the above we deduce that, if (S, d) is a metric subspace of a metric space (M, d), then the open sets in (S, d) need not be open sets in (M, d). For example recall exercise (4) above, we know that $[0, \frac{1}{2})$ is open set in the metric

subspace = [0, 1], while $[0, \frac{1}{2})$ is not open set in \mathbb{R} , since the point $0 \in [0, \frac{1}{2})$ is not an interior point of $[0, \frac{1}{2})$ w.r.t. the Euclidean space $(\mathbb{R}, ||)$.

Exercise:

Let (*M*, *d*) be a metric space and $x \in M$. If $r_2 > r_1 > 0$, prove that;

$$B(x;r_1) \subseteq B(x;r_2).$$

Theorem:

Let (M, d) be a metric space. Then:

- The intersection of a finite collection of open sets in *M* is an open set in *M*.
- 2. The union of any collection of open sets in *M* is an open set in *M*.

Proof:

For 1: Suppose $G_1, ..., G_n$ be open sets in M. Wanted: $\bigcap_{i=1}^n G_i$ is an open set in M, i.e. wanted: $\forall x \in \bigcap_{i=1}^n G_i \exists r > 0 \exists B(x; r) \subseteq \bigcap_{i=1}^n G_i$.

Let $x \in \bigcap_{i=1}^{n} G_i$. Then, $x \in G_i \forall i = 1, ..., n$. But, G_i is an open set in M, thus, $\exists r_i > 0 \ni B(x; r_i) \subseteq G_i \forall i = 1, ..., n$. Put, $r = Min\{r_1, ..., r_n\} > 0$. Since $r < r_i$, hence, $B(x; r) \subseteq B(x; r_i) \subseteq G_i \forall i = 1, ..., n$. Thus, $B(x; r) \subseteq \bigcap_{i=1}^{n} G_i$. So, x is an interior point in $\bigcap_{i=1}^{n} G_i$. Therefore, $\bigcap_{i=1}^{n} G_i$ is an open set.

For 2: Assume, G_{α} be an open set in M for all $\alpha \in I$. Wanted: $\bigcup_{\alpha \in I} G_{\alpha}$ is an open set, i.e. wanted: $\forall x \in \bigcup_{\alpha \in I} G_{\alpha} \exists r > 0 \ni B(x;r) \subseteq \bigcup_{\alpha \in I} G_{\alpha}$. Let $x \in \bigcup_{\alpha \in I} G_{\alpha}$. Then, $x \in G_{\beta}$ for some $\beta \in I$. But, G_{β} is an open set in M, therefore, $\exists r > 0 \ni B(x;r) \subseteq G_{\beta} \subseteq \bigcup_{\alpha \in I} G_{\alpha}$. Thus, $B(x;r) \subseteq \bigcup_{\alpha \in I} G_{\alpha}$. So, x is an interior point in $\bigcup_{\alpha \in I} G_{\alpha}$. Therefore, $\bigcup_{\alpha \in I} G_{\alpha}$ is an open set.

Remark:

In general, the intersection of any collection of open sets in a metric space (M, d) need not to be open set in M. As a counter example, the collection

 $\left\{ \left(\frac{-1}{n}, \frac{1}{n}\right) \mid n \in \mathbb{Z}^+ \right\}$ is an infinite collection of open sets (open intervals) in the Euclidean space \mathbb{R} , but $\bigcap_{n \in \mathbb{Z}^+} \left(\frac{-1}{n}, \frac{1}{n}\right) = \{0\}$ is not open in \mathbb{R} .

Theorem:

Let (S, d) be a metric subspace of a metric space (M, d) and let $X \subseteq S$. Then X is open in S if, and only if, $X = S \cap A$ for some set A which is open in M.

Proof:

Suppose X is an open set in S. Wanted: \exists an open set A in $\exists X = S \cap A$.

Since X is an open set in S, hence, $\forall x \in S$, $\exists r_x > 0 \ni B_s(x; r_x) \subseteq X$. It is clear that, $X = \bigcup_{x \in X} B_s(x; r_x)$. But $B_s(x; r_x) = S \cap B_M(x; r_x)$. So, if we let $A = \bigcup_{x \in X} B_M(x; r_x)$, then A is a union of open sets in M, so it is an open set in M. To complete the proof, we need only to show that $X = S \cap A$.

$$X = \bigcup_{x \in X} B_M(x; r_x)$$
$$= \bigcup_{x \in X} (S \cap B_M(x; r_x))$$
$$= S \cap (\bigcup_{x \in X} B_M(x; r_x))$$
$$= S \cap A$$

Conversely, suppose \exists an open set A in M such that $X = S \cap A$. Wanted: X is open in S. Let $x \in X$, wanted: x is an interior point of X in S, i.e. $\exists r > 0 \ni B_S(x; r_x) \subseteq X$.

Since $x \in X = S \cap A \implies x \in A$. But A is an open set in M, then $\exists r > 0 \ni B_M(x; r_x) \subseteq A \implies S \cap B_M(x; r_x) \subseteq S \cap A = X$.

But $B_s(x; r_x) = S \cap B_M(x; r_x)$ is an open ball in S, hence

$$B_{S}(x; r_{x}) \subseteq S \cap A = X$$
$$\implies B_{S}(x; r_{x}) \subseteq X$$

Hence, x is an interior point of X in S and X is open in S.

Definition (closed set):

Let (M, d) be a metric space. A subset $S \subseteq M$ is called closed set in M if, and only if, $S^c = M - S$ is open set in .

Examples:

In the Euclidean metric space $(\mathbb{R}^2, ||.||)$, the sets,

$$A = \{(x, y): x = y\}, B = \{(x, y): x^2 + y^2 \le 1\};$$

$$C = \{(x, y): x^2 + y^2 \ge 1\} \text{ and};$$

$$D = \{(x, y): x^2 + y^2 = 1\};$$

are closed set in \mathbb{R}^2 , while the set $E = \{(x, y): x^2 + y^2 < 1\}$ is not closed set in \mathbb{R}^2 .

Exercises:

Let (M, d) be a metric space. Prove the following statements:

- 1. The union of a finite collection of closed sets in M is closed set in M.
- 2. The intersection of any collection of closed sets in M is closed set in M.
- If A is open set in M and B is closed set in M, show that A − B is open set in M and B − A is closed set in M.

<u>Proof (1):</u>

Let $\mathcal{M} = \{G_i | i = 1, 2, ..., n\}$ be a finite collection of closed sets in M. Wanted: $\bigcup_{i=1}^n G_i$ is closed set in M, i.e. wanted: $M - (\bigcup_{i=1}^n G_i)$ is open set in M.

Note that,
$$M - (\bigcup_{i=1}^{n} G_i) = \bigcap_{i=1}^{n} (M - G_i)$$
.
Since G_i is closed set in $M \Longrightarrow M - (G_i)$ is open set in $\forall i = 1, 2, ..., n$.
 $\Longrightarrow \bigcap_{i=1}^{n} (M - (G_i))$ is open set in $M \forall i = 1, 2, ..., n$.
 $\Longrightarrow M - (\bigcup_{i=1}^{n} G_i)$ is open set in $M \forall i = 1, 2, ..., n$.
 $\Longrightarrow \bigcup_{i=1}^{n} G_i$ is closed set in M .

<u> Proof (3):</u>

i. Firstly wanted: A - B is open set in M.

Note that, $A - B = A \cap B^c = A \cap (M - B)$. Since *B* is closed set in *M*, then M - B is open in *M*. But, *A* is also open in *M*, then $A \cap (M - B)$ is open set in *M* and hence A - B is open set in *M*.

ii. Secondly wanted: B - A is closed set in M, i.e. M - (B - A) is open in M. Note that,

$$M - (B - A) = M \cap (B \cap A^c)^c = M \cap (B^c \cup A)$$
$$= (M \cap B^c) \cup A = (M - B) \cup A.$$

Since B is closed in M, then M - B is open in M. But A is open in M, thus $(M - B) \cup A$ is open in M. Hence M - (B - A) is open in M. Therefore (B - A) is closed set in M.

Theorem:

Let (S, d) be a metric subspace of a metric space (M, d) and let $Y \subseteq S$. Then Y is closed in S if, and only if, $Y = S \cap B$ for some closed set B in M. **Proof**:

Suppose that Y is closed in S. Wanted: \exists a closed set B in \exists Y = S \cap B. Since Y is closed in S, hence S – Y is open in S. Thus, \exists an open set A in M such that S – Y = S \cap A (according to a previous result).

$$\Rightarrow Y = S - (S \cap A) = S \cap (S \cap A)^{c}$$
$$= S \cap (S^{c} \cup A^{c}) = (S \cap S^{c}) \cup (S \cap A^{c})$$
$$= \emptyset \cup (S \cap A^{c}) = S \cap A^{c} = S \cap (M - A)$$
$$\Rightarrow Y = S \cap (M - A).$$

Since A is open in M, hence M - A is closed in M. So, if we put M - A = B, then B is closed set in M such that $Y = S \cap B$ and our claim is hold.

Conversely, suppose \exists a closed set *B* in $M \ni Y = S \cap B$. Wanted: *Y* is closed in *S*, i.e. S - Y is open in *S*.

Note that,

$$S - Y = S - (S \cap B) = S \cap (S \cap B)^c$$
$$= S \cap (S^c \cup B^c) = S \cap B^c = S \cap (M - B)$$

Since B is closed in M, then A = M - B is open in M. Therefore, $S - Y = S \cap A$ is an open set in S, (according to a previous result) $\Rightarrow Y$ is closed in S.

Theorem (Axioms of an interior):

Let (M, d) be a metric space and $S, T \subseteq M$. Then:

- 1. $\emptyset^\circ = \emptyset$ and $M^\circ = M$.
- **2.** If $S \subseteq T$, then $S^{\circ} \subseteq T^{\circ}$.
- 3. S° is the largest open set in *M* that contained in *S*.
- 4. *S* is open if, and only if, $S = S^{\circ}$.
- **5.** $S^{\circ} = S^{\circ}$.
- 6. $(S \cap T)^{\circ} = S^{\circ} \cap T^{\circ}$.
- 7. In general, $S^{\circ} \cup T^{\circ} \subseteq (S \cup T)^{\circ}$, but $(S \cup T)^{\circ} \neq S^{\circ} \cup T^{\circ}$.

Proof 3:

Let $\Omega = \{G \subseteq M | G \text{ is open in } M \text{ and } G \subseteq S\}$ be the collection of all open sets in *M* that contained in *S*.

Firstly, we shall prove that $S^\circ = \bigcup_{G \in \Omega} G$.

For $S^{\circ} \subseteq \bigcup_{G \in \Omega} G$: Let $x \in S^{\circ}$, then $\exists r > 0 \exists B(x; r) \subseteq S$.

Wanted: $x \in \bigcup_{G \in \Omega} G$.

According to a previous result, B(x;r) is an open set with $B(x;r) \subseteq S$. Thus, $B(x;r) \in \Omega$, so $\exists G' \in \Omega \ni B(x;r) = G'$. But $G' \subseteq \bigcup_{G \in \Omega} G$, then $B(x;r) \subseteq \bigcup_{G \in \Omega} G \Longrightarrow x \in \bigcup_{G \in \Omega} G \Longrightarrow S^{\circ} \subseteq \bigcup_{G \in \Omega} G$.

For $\bigcup_{G \in \Omega} G \subseteq S^{\circ}$: Let $x \in \bigcup_{G \in \Omega} G$. Wanted: $x \in S^{\circ}$.

Since $x \in \bigcup_{G \in \Omega} G$, hence $\exists G' \in \Omega \ \ni x \in G'$. That is, G' is an open set in M and $G \subseteq S$. Therefore, x is an interior point of G' and there exists r > 0 such that $B(x;r) \subseteq G' \subseteq S \Longrightarrow B(x;r) \subseteq S$. Thus, $x \in S^{\circ}$ and $\bigcup_{G \in \Omega} G \subseteq S^{\circ}$.

Now, since $S^{\circ} = \bigcup_{G \in \Omega} G$ is a union of open sets in M, hence S° is open in Mand it contained in S, since $S^{\circ} \subseteq S$. Thus, $S^{\circ} \in \Omega$. In fact, if G is open and $G \subseteq$

S, then $G \subseteq \bigcup_{G \in \Omega} G = S^{\circ}$. Therefore, S° is the largest open set that contained in *S*.

Proof 6:

Wanted: $(S \cap T)^{\circ} = S^{\circ} \cap T^{\circ}$.

i. For $(S \cap T)^{\circ} \subseteq S^{\circ} \cap T^{\circ}$: Since $S \cap T \subseteq S$ and $S \cap T \subseteq T$, hence $(S \cap T)^{\circ} \subseteq S^{\circ}$ and $(S \cap T)^{\circ} \subseteq T^{\circ}$ as an application of axiom 2 above. Therefore, $(S \cap T)^{\circ} \subseteq S^{\circ} \cap T^{\circ}$.

ii. For $S^{\circ} \cap T^{\circ} \subseteq (S \cap T)^{\circ}$: Let $x \in S^{\circ} \cap T^{\circ}$. Wanted: $x \in (S \cap T)^{\circ}$, i.e. wanted: $\exists r > 0 \ni B(x; r) \subseteq S \cap T$. Since $x \in S^{\circ} \cap T^{\circ} \Longrightarrow x \in S^{\circ}$ and $x \in T^{\circ}$; $\Rightarrow \exists r_1 > 0 \ni B(x; r_1) \subseteq S$ and $\exists r_2 > 0 \ni B(x; r_2) \subseteq T$; Put $r = Min\{r_1, r_2\}$. According to a previous result, $B(x; r) \subseteq B(x; r_i)$ for $i = 1, 2 \implies B(x; r) \subseteq S$ and $B(x; r) \subseteq T \implies B(x; r) \subseteq S \cap T \implies$ $x \in (S \cap T)^{\circ}$.

From i and ii, $(S \cap T)^{\circ} = S^{\circ} \cap T^{\circ}$.

Exercise: Prove the axioms 1,2,4,5 and 7 above.

Definition (Adherent points):

Let (M, d) be a metric space and let $S \subseteq M$. A point $x \in M$ is called an *adherent point* of S if, and only if, for every r > 0 the open ball $B_M(x; r)$ satisfied, $B_M(x; r) \cap S \neq \emptyset$.

Definition (closure of a set):

The set of all adherent points of a set S is called *the closure of a set* S which is denoted by \overline{S} .

Remark: In general, $S \subseteq \overline{S}$. In fact, if $x \in S$, then $x \in B_M(x; r) \cap S$, $\forall r > 0$.

Example 1:

In the Euclidean metric space (\mathbb{R} , |.|), let;

A = (-3, 4), B = [0, 1], C = [3, 7], $D = \mathbb{Z}$, $E = \mathbb{Q}$. Then, $\overline{A} = [-3, 4]$, $\overline{B} = [0, 1]$, $\overline{C} = [3, 7]$, $\overline{D} = \mathbb{Z}$, $\overline{E} = \mathbb{R}$.

Example 2:

In the Euclidean metric space (\mathbb{R}^2 , $\|.\|$), let;

$$A = \{(x, y): x^{2} + y^{2} < 1\}, B = \{(x, y): x^{2} + y^{2} > 1\},\$$
$$C = \{(x, y): x^{2} + y^{2} = 1\}, D = \{(x, y): x \ge 0, y \ge 0\}.$$
$$\Rightarrow \overline{A} = \{(x, y): x^{2} + y^{2} \le 1\}, \overline{B} = \{(x, y): x^{2} + y^{2} \ge 1\},\$$
$$\overline{C} = \{(x, y): x^{2} + y^{2} = 1\}, \overline{D} = \{(x, y): x \ge 0, y \ge 0\}.$$

Theorem (Axioms of a Closure):

Let (M, d) be a metric space and let $S, T \subseteq M$. Then

- 1. $\overline{\emptyset} = \emptyset$ and $\overline{M} = M$.
- **2.** If $S \subseteq T$, then $\overline{S} \subseteq \overline{T}$.
- **3.** \overline{S} is the smallest closed set in *M* such that $S \subseteq \overline{S}$.
- 4. S is closed in $M \Leftrightarrow \overline{S} = S$.
- **5.** $\bar{S} = \bar{S}$.
- 6. $\overline{S \cup T} = \overline{S} \cup \overline{T}$.
- 7. In general, $(\overline{S \cap T}) \subseteq \overline{S} \cap \overline{T}$. But, $(\overline{S \cap T}) \neq \overline{S} \cap \overline{T}$.
- 8. $S^{\circ} = \overline{S^c}^c$

Proof 3:

Let $\Omega = \{F \subseteq M | F \text{ is closed in } M \text{ and } S \subseteq F\}$ be the collection of all closed sets in M that contain S.

Firstly, we shall prove that $\overline{S} = \bigcap_{F \in \Omega} F$.

For $\overline{S} \subseteq \bigcap_{F \in \Omega} F$: Let $x \in \overline{S}$, then $\forall r > 0 \ni B(x; r) \cap S \neq \emptyset$.

Wanted: $x \in \bigcap_{F \in \Omega} F$.

By contrary, assume that $x \notin \bigcap_{F \in \Omega} F$. So, $\exists F' \in \Omega \ni x \notin F' \Longrightarrow x \in {F'}^c$. But ${F'}^c$ is open set, since F' is closed, that is x is an interior point of ${F'}^c$, so $\exists r > 0 \ni B(x;r) \subseteq {F'}^c \Longrightarrow B(x;r) \cap F' = \emptyset$. But $F' \in \Omega$, i.e. it satisfied $S \subseteq F' \Longrightarrow B(x;r) \cap S \subseteq B(x;r) \cap F' = \emptyset$.

Thus, $\exists r > 0 \ni B(x;r) \cap S = \emptyset \Longrightarrow x \notin \overline{S}$ and that contradicts our assumption that $x \in \overline{S}$. Therefore, $x \in \bigcap_{F \in \Omega} F$.

For $\bigcap_{F \in \Omega} F \subseteq \overline{S}$: Let $x \in \bigcap_{F \in \Omega} F$. Wanted: $x \in \overline{S}$:

By contrary, suppose $x \notin \overline{S}$. That is, $\exists r > 0 \ni B(x;r) \cap S = \emptyset$. Thus, $S \subseteq (B(x;r))^{c}$. But $(B(x;r))^{c}$ is a closed set in M and it contains S, so $(B(x;r))^{c} \in \Omega$. That is, $\exists F' \in \Omega \ni F' = (B(x;r))^{c} \Longrightarrow \bigcap_{F \in \Omega} F \subseteq F'$. But, $x \notin (B(x;r))^{c} \supseteq \bigcap_{F \in \Omega} F \Longrightarrow x \notin \bigcap_{F \in \Omega} F$ and that contradict our assumption that $x \in \bigcap_{F \in \Omega} F$. Therefore, $x \in \overline{S}$ and $\bigcap_{F \in \Omega} F \subseteq \overline{S}$.

Now, since $\bar{S} = \bigcap_{F \in \Omega} F$ is an intersection of closed sets in M, hence \bar{S} is closed and it contains S, since $S \subseteq \bar{S}$. Thus, $\bar{S} \in \Omega$. In fact, if F is closed and $S \subseteq F$, then $\bar{S} = \bigcap_{F \in \Omega} F \subseteq F$. Therefore, \bar{S} is the smallest closed set that contain S.

Proof 6:

Wanted: $\overline{S \cup T} = \overline{S} \cup \overline{T}$.

- i. For $\overline{S} \cup \overline{T} \subseteq \overline{S \cup T}$: Since $S \subseteq S \cup T$ and $T \subseteq S \cup T$, hence $\overline{S} \subseteq \overline{S \cup T}$ and $\overline{T} \subseteq \overline{S \cup T}$, as an application of axiom 2 above. Therefore, $\overline{S} \cup \overline{T} \subseteq \overline{S \cup T}$.
- ii. For $\overline{S \cup T} \subseteq \overline{S} \cup \overline{T}$: Let $x \in \overline{S \cup T}$. Wanted: $x \in \overline{S} \cup \overline{T}$.

By contrary, assume $x \notin \overline{S} \cup \overline{T} \Longrightarrow x \notin \overline{S}$ and $x \notin \overline{T}$;

 $\Rightarrow \exists r_1 > 0 \ \exists B(x; r_1) \cap S = \emptyset \text{ and } \exists r_2 > 0 \ \exists B(x; r_2) \cap T = \emptyset;$ Put $r = Min\{r_1, r_2\}$. According to a previous result, $B(x; r) \subseteq B(x; r_i)$ for i = 1, 2. Then;

 $B(x;r) \cap S \subseteq B(x;r_1) \cap S = \emptyset$ and $B(x;r) \cap T \subseteq B(x;r_2) \cap T = \emptyset$;

 $\implies B(x;r) \cap S = \emptyset \text{ and } B(x;r) \cap T = \emptyset \implies B(x;r) \cap (S \cup T) = \emptyset.$

Therefore, $x \notin \overline{S \cup T}$ (a contradiction). Thus, $x \in \overline{S} \cup \overline{T}$ and $\overline{S \cup T} \subseteq \overline{S} \cup \overline{T}$. From i and ii, $\overline{S \cup T} = \overline{S} \cup \overline{T}$.

Proof 8:

Wanted: $S^{\circ} = \overline{S^c}^c$.

For $S^{\circ} \subseteq \overline{S^{c}}^{c}$: Let $x \in S^{\circ}$. Wanted: $x \in \overline{S^{c}}^{c}$. Since $x \in S^{\circ} \Longrightarrow \exists r > 0 \ \ni B(x;r) \subseteq S \Longrightarrow B(x;r) \cap S^{c} = \emptyset$ $\Longrightarrow x \notin \overline{S^{c}} \implies x \in \overline{S^{c}}^{c} \implies S^{\circ} \subseteq \overline{S^{c}}^{c}$.

For $\overline{S^c}^c \subseteq S^\circ$: Let $x \in \overline{S^c}^c$. Wanted: $x \in S^\circ$. Since $x \in \overline{S^c}^c \implies x \notin \overline{S^c} \implies \exists r > 0 \ni B(r; r) \cap S^c = \emptyset$

Since
$$x \in S^c \implies x \notin S^c \implies \exists r > 0 \Rightarrow B(x;r) \cap S^c = \emptyset \implies B(x;r) \subseteq S = x \in S^\circ \implies \overline{S^c}^c \subseteq S^\circ.$$

Therefore, our goal is down.

Exercise: Prove the axioms 1,2,4,5 and 7 above.

Definition (Accumulation (cluster) points of a set):

Let (M, d) be a metric space and let $S \subseteq M$. A point $x \in M$ is said to be an *Accumulation point* of *S* if, and only if, for every open ball $B_M(x; r)$;

$$B_M(x;r) \cap S - \{x\} \neq \emptyset.$$

The set of all Accumulation points of a set *S* is called *the derived set* of *S* which is denoted by *S'* or *dS*. Note that, $S' \subseteq S$.

Remark:

Let (*M*, *d*) be a metric space and let $S \subseteq M$. Then:

- 1. x is an Accumulation point of S if, and only if, every open ball $B_M(x;r)$ contains points of S different from x.
- 2. x is an Accumulation point of S if, and only if, x is an adherent point of $S \{x\}$.

Example:

In the Euclidean metric space $(\mathbb{R}, |.|)$, let;

$$A = (-3, 4) , B = [0, 1], C = [3, 7] , D = \mathbb{Z} , E = \mathbb{Q}.$$
$$\Rightarrow A' = [-3, 4] , B' = [0, 1] , C' = [3, 7] , D' = \emptyset , E' = \mathbb{R}$$

Example:

In the Euclidean metric space (\mathbb{R}^2 , $\|.\|$), let;

$$A = \{(x, y): x^{2} + y^{2} < 1\}, \qquad B = \{(x, y): x^{2} + y^{2} > 1\}, \\C = \{(x, y): x^{2} + y^{2} = 1\}, \qquad D = \{(x, y): x \ge 0, y \ge 0\}.$$
$$\implies A' = \{(x, y): x^{2} + y^{2} \le 1\}, \qquad B' = \{(x, y): x^{2} + y^{2} \ge 1\}, \\C' = \{(x, y): x^{2} + y^{2} = 1\}, \qquad D' = \{(x, y): x \ge 0, y \ge 0\}.$$

Theorem (Axioms of a Derived set):

Let (M, d) be a metric space and let $S, T \subseteq M$. Then

- 1. $S \subseteq T \implies S' \subseteq T'$.
- **2.** $(S \cup T)' = S' \cup T'$.
- **3.** In general, $(S \cap T)' \subseteq S' \cap T'$, but $(S \cap T)' \neq S' \cap T'$.
- $4. \ \bar{S} = S' \cup S.$

Proof 4:

To show that, $\overline{S} = S' \cup S$, we need to prove:

- i. $S' \cup S \subseteq \overline{S}$.
- ii. $\overline{S} \subseteq S' \cup S$.

For i: From the definitions of the closure and the derived set of S, we have $S \subseteq \overline{S}$ and $S' \subseteq \overline{S}$. Therefore, $S' \cup S \subseteq \overline{S}$.

For ii: let $x \in \overline{S}$. Wanted: $x \in S' \cup S$.

By contrary, assume that $x \notin S' \cup S \Longrightarrow x \notin S'$ and $x \notin S$;

$$x \notin S' \Longrightarrow \exists r > 0, \ B(x;r) \cap S - \{x\} = \emptyset.$$

 $\Rightarrow \exists r > 0, B(x; r) \cap S = \emptyset$, (since $x \notin S$ and $S - \{x\} = S$).

 $\Rightarrow x \notin \overline{S}$, (a contradiction).

 $\Rightarrow x \in S' \cup S$. Accordingly, $\overline{S} \subseteq S' \cup S$.

From i and ii we have $\overline{S} = S' \cup S$.

Definition (Boundary of a set):

Let (M, d) be a metric space and let $S \subseteq M$. A point $x \in M$ is said to be **boundary point** of a set S if, and only if, for every open ball $B_M(x; r)$ contain at least one point of S and at least one point of S^c , i.e. $(B(x; r) \cap S \neq \emptyset$ and $B(x; r) \cap S^c \neq \emptyset$, i.e. $(x \in \overline{S} \cap \overline{S^c})$.

The set of all boundary points is called *boundary set* of *S* and it denoted by ∂S . In fact; $\partial S = \overline{S} \cap \overline{S^c}$.

Example:

In the Euclidean metric space (\mathbb{R} , | |), let A = (-3, 3), $B = \mathbb{Z}$, $C = \mathbb{Q}$.

i.
$$\partial A = \overline{A} \cap \overline{A^c} = [-3,3] \cap ((-\infty,-3] \cup [3,\infty)) = \{-3,3\}.$$

ii. $\partial B = \overline{B} \cap \overline{B^c} = \mathbb{Z} \cap (\bigcup_{n \in \mathbb{Z}} [n, n+1]) = \mathbb{Z}.$

iii. $\partial C = \overline{C} \cap \overline{C^c} = \mathbb{R} \cap \mathbb{R} = \mathbb{R}.$

Example:

In the Euclidean metric space (\mathbb{R}^2 , || ||), let;

$$\begin{split} A &= \{(x\,,y)\colon x^2+y^2<1\}, \qquad B = \{(x\,,y)\colon x^2+y^2>1\} \ , \\ C &= \{(x\,,y)\colon x^2+y^2=1\}. \end{split}$$

i.
$$\partial A = \overline{A} \cap \overline{A^c} = \{(x, y) : x^2 + y^2 \le 1\} \cap \{(x, y) : x^2 + y^2 \ge 1\}$$

= $\{(x, y) : x^2 + y^2 = 1\}.$

ii. $\partial B = \overline{B} \cap \overline{B^c} = \{(x, y): x^2 + y^2 \ge 1\} \cap \{(x, y): x^2 + y^2 \le 1\}$ = $\{(x, y): x^2 + y^2 = 1\}.$

iii.
$$\partial C = \overline{C} \cap \overline{C^c} = \{(x, y): x^2 + y^2 = 1\} \cap \{(x, y): x^2 + y^2 \ge 1\} \cup \{(x, y): x^2 + y^2 \le 1\} = \{(x, y): x^2 + y^2 = 1\}.$$

Exercises:

Let (M, d) be a metric space and let $A, B \subseteq M$. Then:

- 1. $\partial A = \emptyset$ if, and only if, A is both open and closed in M.
- 2. $\partial(A^c) = \partial A$.

3. If $\overline{A} \cap \overline{B} = \emptyset$, then $\partial(A \cup B) = \partial A \cup \partial B$.

4. If $A^{\circ} = B^{\circ} = \emptyset$ and if A is closed in M, then $(A \cup B)^{\circ} = \emptyset$.

Definition (Bounded set):

Let (M, d) be a metric space. A subset S if M is called **bounded** if $S \subseteq B_M(x; r)$, for some r > 0 and some $a \in M$.

Example:

In the Euclidean metric space $(\mathbb{R}, | |)$, the set $A = (-3, 5] \cup \{7\}$ is bounded since we can find an open ball B(1;7) = (-6,8) such that $A \subseteq B(1;7)$, as shown in the following figure;

Example:

In the Euclidean metric space (\mathbb{R}^2 , || ||),

the set $A = \{(x, y) \in \mathbb{R}^2 : -1 \le x \le 1, -1 \le y \le 1\}$ is bounded set since we can find an open ball $B((0,0); 2) = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 4\}$ such that $A \subseteq B((0,0); 2)$, as shown in the following figure;

Theorem (Bolzano-Weierstrass):-

Let *S* be a bounded subsets of the Euclidean metric space (\mathbb{R}^n , $\|.\|$) and it has infinitely many points. Then there is at least one point in \mathbb{R}^n which is an accumulation point of *S*.

Remark: To simplify the idea of the proof, we shall give it in the Euclidean space \mathbb{R} , (i.e. when n = 1).

Proof:

Since *S* is bounded in \mathbb{R} , then we can find an open interval (-a, a) such that $S \subseteq B(0; a) = (-a, a) \Rightarrow S \subseteq [-a, a]$.

- **1.** Subdivide [-a, a] into [-a, 0] and [0, a]. At least one of the subintervals [-a, 0] or [0, a] contains an infinite subset of *S*. Denote such subinterval by $[a_1, b_1]$.
- **2.** Bisect $[a_1, b_1]$ and obtain a subinterval $[a_2, b_2]$ containing an infinite subset of *S* and continue this process.
- 3. In this way, a countable collection of closed subintervals $[a_1, b_1]$, $[a_2, b_2], ..., [a_n, b_n], ...$ was obtained. The n^{th} closed interval $[a_n, b_n]$ being of length $b_n a_n = a/2^{n-1}$. Therefore, the length of $[a_n, b_n]$ is approach to zero as $n \to \infty$.
- 4. Let A = {a₁, a₂, ..., a_n, ...} and B = {b₁, b₂, ..., b_n, ...}. Since a_i < b₁, ∀i = 1,2, ..., hence A is bounded above and Sup(A) is exist. Moreover, B is bounded below and Inf(B) is exist, since b_i > a₁, ∀i = 1,2, In fact, we have;

 $a_1 < a_2 < \dots < a_n < \dots < b_n < \dots < b_2 < b_1$

Therefore, $Sup{A} = Inf{B} = x$ say, (as an exercise prove that). Notice that, x may or may not belong to S.

Now, we shall prove that x is an accumulation point of S, i.e. we need to show that $\forall r > 0$, $B(x;r) \cap S - \{x\} \neq \emptyset$.

Let $> 0 \implies \frac{r}{4a} > 0$. By using a previous result;

$$\exists n \in \mathbb{Z}^+ \ni \frac{1}{2^n} < \frac{r}{4a} \Longrightarrow \frac{a}{2^{n-1}} < \frac{r}{2} \Longrightarrow b_n - a_n = \frac{a}{2^{n-1}} < \frac{r}{2}.$$

Thus, there exists a closed interval $[a_n, b_n]$ has length less than $\frac{r}{2}$. According, $x = Sup\{A\} = Inf\{B\}$, so $a_n < x < b_n$ and;

$$[a_n, b_n] \subseteq B\left(x; \frac{r}{2}\right) = \left(x - \frac{r}{2}, x + \frac{r}{2}\right) \subseteq B(x; r) = (x - r, x + r).$$

But $[a_n, b_n]$ contains an infinite subset of *S*. Therefore, B(x; r) contains an infinite subset of $S \Rightarrow B(x; r) \cap S \neq \emptyset \Rightarrow B(x; r) \cap S - \{x\} \neq \emptyset$. Thus, for all open 1-ball B(x; r) = (x - r, x + r) we have, $B(x; r) \cap S - \{x\} \neq \emptyset$. Hence *x* is an accumulation point of *S*.

Theorem:

If x is an accumulation point of a subset S in the Euclidean space \mathbb{R}^n , then every open *n*-ball B(x; r) contains infinitely many points of S.

Proof: By contrary, suppose there is an open *n*-ball B(x; r) such that;

$$B(x;r) \cap S - \{x\} = \{a_1, a_2, \dots, a_n\}$$

Since a_1 , a_2 , ..., $a_n \in B(x; r)$, hence;

 $||x - a_1|| < r$, $||x - a_2|| < r$, ..., $||x - a_n|| < r$.

Put $r' = \frac{1}{2}Min\{||x - a_1||, ||x - a_2||, ..., ||x - a_n||\} > 0$. We need to show that, $B(x; r') \cap S - \{x\} = \emptyset$.

Suppose that $B(x; r') \cap S - \{x\} \neq \emptyset$

 $\Rightarrow \exists \text{ at least } y \in B(x;r') \cap S - \{x\}.$ $\Rightarrow y \in B(x;r') \text{ and } y \in S - \{x\}.$ $\Rightarrow ||x - y|| < r' \text{ and } y \in S - \{x\}.$

Since $a_i \in B(x;r) \Longrightarrow ||x - a_i|| < r$, $\forall 1 \le i \le n$.

But $r' < ||x - a_i|| < r$, $\forall 1 \le i \le n$. Therefore, ||x - y|| < r' < r and $y \in S - \{x\}$. $\Rightarrow ||x - y|| < r$ and $y \in S - \{x\}$. $\Rightarrow y \in B(x;r)$ and $y \in S - \{x\}$. $\Rightarrow y \in B(x;r) \cap S - \{x\}$. $\Rightarrow y \in \{a_1, a_2, ..., a_n\}$.

So, $\exists 1 \le i \le n \ \ni y = a_i$ and this contradicts the fact; $a_i \notin B(x;r')$, for all $1 \le i \le n$. Therefore, $B(x;r') \cap S - \{x\} = \emptyset \Longrightarrow x$ not an accumulation point of *S* (a contradiction). Thus, every open ball B(x;r) contains infinitely many points of *S*.

Remark:

The converse of the above theorem is not true in general. That is, if $S \subseteq \mathbb{R}^n$ is an infinite set of points, then S need not has an accumulation point. For example, the set of integers Z is an infinite subset of R, but it has no accumulation points, i.e. $\mathbb{Z}' = \emptyset$.

Exercise:

Prove that every finite set *S* of \mathbb{R}^n has no accumulation point.

Cantor Intersection Theorem:

Let $\{Q_1, Q_2, ..., Q_n, ...\}$ be a countable collection of non-empty sets in the Euclidean space \mathbb{R}^n such that:

- **1.** $Q_{k+1} \subseteq Q_k$, $\forall k = 1, 2,$
- **2.** Q_k is closed, $\forall k = 1, 2, \dots$ and;
- **3.** Q_1 is bounded.

Then the intersection $\bigcap_{k=1}^{\infty} Q_k$ is closed and non-empty.

Proof: Let $S = \bigcap_{k=1}^{\infty} Q_k$. Since Q_k is closed set in \mathbb{R}^n , $\forall k = 1, 2, ...,$ hence S is closed set in \mathbb{R}^n (by applying a previous result that state: the intersection of any collection of closed sets is a closed set). We need only to show that, $S \neq \emptyset$.

i. If Q_k is a finite set for some k = 1, 2, ..., with $|Q_k| = n$, then from 1 above we have;

 $\dots \subseteq Q_{k+\ell+2} = \emptyset \subseteq Q_{k+\ell+1} = \emptyset \subseteq Q_{k+\ell} \subseteq \dots \subseteq Q_{k+1} \subseteq Q_k \subseteq \dots \subseteq Q_1,$ for some $1 \le \ell \le n$. But, our assumption states $Q_k \ne \emptyset, \forall k = 1, 2, \dots$. That is the collection $\{Q_1, Q_2, \dots, Q_k, \dots\} = \{Q_1, Q_2, \dots, Q_{k+\ell}\}$ is finite and hence $S = \bigcap_{k=1}^{\infty} Q_k = Q_{k+\ell} \ne \emptyset.$

ii. Assume that each of Q_k contains infinitely many points, ∀ k = 1, 2, Let A = {x₁, x₂, ..., x_k, ...}, where x_k ∈ Q_k, , ∀ k = 1, 2, Since Q_k ⊆ Q₁, ∀ k = 1, 2,, hence A ⊆ Q₁. But Q₁ is bounded and infinite in ℝⁿ, so as an application of Bolzano-Weierstrass theorem, there exists an accumulation point say x of A in ℝⁿ. We will show that, x ∈ S, i.e. S ≠ Ø.

Since $x \in \mathbb{R}^n$ is an accumulation point of *A*, then;

$$\forall r > 0$$
, $B(x;r) \cap A - \{x\} \neq \emptyset$

But Q_k ($\forall k = 1, 2, ...$) contains all (except (possibly) a finite number) of the points of $A \Longrightarrow B(x; r) \cap Q_k - \{x\} \neq \emptyset, \forall k = 1, 2, ...$

 $\Rightarrow x \in Q'_k, \forall k = 1, 2, \dots$

But Q_k is closed in \mathbb{R}^n and $Q'_k \subseteq Q_k$, hence $x \in Q_k$, $\forall k = 1, 2, ...$ Therefore, $x \in S = \bigcap_{k=1}^{\infty} Q_k \neq \emptyset$.

Definition (covering):

Let (M, d) be a metric space and let $S \subseteq M$. A collection $\Omega = \{G_i | i \in I\}$ of a sets in M is called a *covering* of S if $S \subseteq \bigcup_{i \in I} G_i$. If G_i is an open set in Mfor all $i \in I$, then the collection Ω is called an *open covering* of S. If a finite subcollection of Ω is also a covering of S, then this finite subcollection of Ω is called a finite subcovering of S.

Example 1: In the Euclidean space \mathbb{R} , the collection $\Omega = \{(n, n + 2): n \in Z\}$ is a countable open covering of \mathbb{R} , as shown in the following figure:

Example 2:

In the Euclidean space \mathbb{R} , the collection $\Omega = \{\left(\frac{1}{n}, \frac{2}{n}\right) : n = 2, 3, ...\}$ is a countable open covering of the open interval (0.1), as shown in the following figure:

Example 3:

In the Euclidean space \mathbb{R}^2 , the collection $\Omega = \{B((x,x);x)|x > 0\}$ is an open covering of the set $S = \{(x,y)|x > 0, y > 0\}$. Note that, The collection Ω is not countable. In $\Omega = \{B(x;x)|x > 0 \text{ and } x \in \mathbb{Q}\}$, then Ω is a countable covering of *S*.

Exercise:

Let $\Psi = \{B_1, B_2, ...\}$ denotes the countable collection of all n-balls having rational radii and centers at points with rational coordinates. Assume $x \in \mathbb{R}^n$ and *S* be an open set in \mathbb{R}^n such that $x \in S$. Prove that, there exists $B_k \in \Psi$ such that $x \in B_k \subseteq S$.

Theorem (Lindelöf covering theorem):

Let *A* be a subset of the Euclidean space \mathbb{R}^n and let Ω be an open covering of *A*. Then there is a countable subcollection of Ω which also covers *A*. *Proof*:

Let $\Psi = \{B_1, B_2, ...\}$ be the countable collection of all *n*-balls having centers with rational coordinates and rational radii. Since Ω is an open covering of $A \Longrightarrow A \subseteq \bigcup_{S \in \Omega} S \Longrightarrow \forall x \in A$, $\exists S_x \in \Omega \ni x \in S_x$. Since S_x is an open set in \mathbb{R}^n and $x \in S_x$, so by applying the above exercise we have;

$$\exists B_k \in \Psi \ni x \in B_k \subseteq S_x.$$

There are, of course infinitely many such B_k in Ψ such that $x \in B_k \subseteq S_x$. So, we will choose only one of these open *n*-balls, for example the one of smallest index, say $m(x) = Min\{k : x \in B_k \subseteq S_x\} \Longrightarrow x \in B_{m(x)} \subseteq S_x \dots (1)$ From above we deduce the following, $\forall x \in A, \exists B_{m(x)} \in \Psi \ni x \in B_{m(x)}$.

$$\Rightarrow A \subseteq \bigcup_{x \in A} B_{m(x)} \dots (2)$$

Therefore, $\{B_{m(x)} | x \in A\}$ is a countable subcollection of Ψ which also covers *A*. From (1) and (2) above, we have;

$$A \subseteq \bigcup_{x \in A} B_{m(x)} \subseteq \bigcup_{x \in A} S_x.$$

Thus, $\{S_x \mid x \in A\}$ form a subcollection of Ω and an open covering of A. Since, $\forall x \in A, \exists S_x \in \Omega$ (and hence $\exists B_{m(x)} \in \Psi$ corresponding to the open set S_x) such that $x \in B_{m(x)} \subseteq S_x$. That is, there is 1-1 correspondence between $\{B_{m(x)} \mid x \in A\}$ and $\{S_x \mid x \in A\}$. Therefore, as $\{B_{m(x)} \mid x \in A\}$ is a countable covering of A, we deduce that $\{S_x \mid x \in A\}$ form a countable subcollection of Ω which also covers A.

Remark:

The Lindelöf covering theorem states that, from any open covering of a set A in \mathbb{R}^n we can extract a countable subcovering of A. The Hine-Borel theorem tells us that if, in addition, we know that A is closed and bounded, we can reduce the countable subcovering of A to a finite subcovering of A.

Theorem (Hiene-Borel covering theorem):

Let *A* be a closed and bounded set in the Euclidean space \mathbb{R}^n . If Ω is an open covering of *A*, then there is a finite subcollection of Ω which also covers *A*. *Proof:*

Since *F* is an open covering of *A*, hence by Lindelöf covering theorem, there exists a countable subcollection of Ω , say $\Psi = \{I_1, I_2, ...\}$ also covers *A*, i.e. $A \subseteq \bigcup_{k \ge 1} I_k$. We shall show that $\exists m \ge 1 \ni A \subseteq \bigcup_{k=1}^m I_k$.

Now, consider for $m \ge 1$ the union $S_m = \bigcup_{k=1}^m I_k$. Clearly, S_m is an open set of \mathbb{R}^n since it is a union of open sets I_1, I_2, \dots, I_m , $\forall m \ge 1$. Therefore, $S_m^c = \mathbb{R}^n - S_m$ is closed $\forall m \ge 1$. Define a countable collection of sets $\{Q_1, Q_2, \dots\}$ as follows:

$$Q_1 = A$$
 and $Q_m = A \cap S_m^c$, $\forall m \ge 1$.

We will show that $Q_m = \emptyset$ for some $m \ge 1$, which implies that, $A \cap S_m^c = \emptyset$, for some $m \ge 1$. This will give as $A \subseteq (S_m^c)^c = S_m = \bigcup_{k=1}^m I_k$ for some $m \ge 1$, i.e. $A \subseteq \bigcup_{k=1}^m I_k$ for some m, and hence $\{I_1, I_2, ..., I_m\}$ is a finite subcover of A of Ω , so, our aim is hold.

To do this, by contrary suppose that, $Q_m \neq \emptyset$, $\forall m \ge 1$. Observe that, the sets Q_m , $\forall m \ge 1$ have the following properties:

- i. Q₁ = A is closed and Q_m, is closed set (since Q_m is the intersection of closed sets A and S^c_m), ∀ m ≥ 1.
- **ii.** $Q_m \supseteq Q_{m+1} \quad \forall \ m \ge 1$.(In fact: $S_m \subseteq S_{m+1} \ m \ge 1 \Rightarrow S_m^c \supseteq S_{m+1}^c \ \forall \ m > 1$ $\Rightarrow Q_m \supseteq Q_{m+1} \forall \ m > 1$. But $Q_m = A \cap S_m^c, \forall \ m > 1$.Therefore, $Q_m \subseteq Q_1$, $\forall \ m \ge 1$. Hence $Q_m \supseteq Q_{m+1}, \ m \ge 1$).

iii. $Q_1 = A$ is bounded.

From Cantor intersection theorem, we have $\bigcap_{m=1}^{\infty} Q_m \neq \emptyset$, i.e. $\exists x \in Q_1 \cap Q_2 \cap Q_3 \cap \dots \neq \emptyset$. $Q_3 \cap \dots \neq \emptyset$. But $A = Q_1$, thus $\exists x \in A \cap Q_2 \cap Q_3 \cap \dots \neq \emptyset$.

 $\Rightarrow \exists x \in A \ \exists x \in Q_m, \forall m \ge 1$, where $Q_m = A \cap S_m^c, \forall m \ge 1$.

 $\implies \exists x \in A \exists x \notin S_m = \bigcup_{k=1}^m I_k , \forall m \ge 1.$

 $\Rightarrow \exists x \in A \ \exists x \notin I_k, \forall k \ge 1 \Rightarrow A \notin \bigcup_{k=1}^m I_k, \text{ this is a contradiction. Hence,}$ $Q_m = \emptyset \text{ for some } m \Rightarrow A \subseteq S_m = \bigcup_{k=1}^m I_k \text{ for some } m \Rightarrow \{I_1, I_2, \dots, I_m\}$ forms a finite open subcovering of A contained of Ω .

Compactness in metric spaces

Definition:

Let (M, d) be a metric space. A subset S of M is called *compact* if every open covering of S contains a finite subcovering.

Theorem:

Let S be a compact subset of a metric space (M, d). Then:

- 1. *S* is closed and bounded .
- 2. Every infinite subset of *S* has an accumulation point in *S*.

Proof (1):

Proof S bounded in M:

Choose a point *p* in *S*. The collection $\{B_M(p;k) | k = 1, 2, 3, ...\}$ forms an open covering of *S*, i.e. $S = \bigcup_{m=1}^{\infty} B_M(p;k)$. But *S* is compact, therefore there exists a finite subcovering of *S*, i.e. $S \subseteq \bigcup_{k=1}^{n} B_M(p;k)$. Since $\bigcup_{k=1}^{n} B_M(p;k) = B_M(p;n)$, hence $S \subseteq B_M(p;n)$ and *S* is bounded in *M*. **Proof S is closed set in M:**

We know that *S* is closed in *M* if and only if $S' \subseteq S$, i.e. if *S* contains all its accumulation points. Consequently, *S* is not closed in *M* if, and only if, there exists an accumulation points of *S* which is not belong to *S*, i.e. $\exists y \in S' \ni y \notin S$. We want to prove *S* closed in *M*, so by contrary suppose *S* is not closed in *M*, i.e. suppose that \exists an accumulation point *y* of *S* such that $y \notin S$.

Now, for every $x \in S$, let $r_x = \frac{1}{2}d(x, y)$, where $r_x > 0 \forall x \in S$, since $y \notin S$. The collection $\{B_M(x; r_x) | x \in S\}$ forms an open covering of S, i.e. $S \subseteq \bigcup_{x \in S} B_M(x; r_x)$. But S is compact $\Rightarrow \exists$ a finite subcover say;

 $B_M(x_1;r_1), B_M(x_2;r_2), \dots, B_M(x_n;r_n)$, i.e. $S \subseteq \bigcup_{k=1}^n B_M(x_k;r_k)$. Let $r = Min\{r_2, r_2, \dots, r_n\}$. We will show that, $B_M(y;r) \cap S - \{y\} = \emptyset$, i.e. $B_M(y;r) \cap S = \emptyset$ (since by our assumption $y \notin S$) and this will contradict the fact that y is an accumulation point of S. To do this we need to show that $B_M(y;r) \cap B_M(x_k;r_{x_k}) = \emptyset$ for $k = 1, 2, 3, \dots, n$.

let $z \in B_M(y; r)$, we will show that $z \notin B_M(x_k; r_{x_k})$ for all k = 1, 2, 3, ..., n, i.e. $d(z, x_k) \ge r_{x_k}$. The triangle inequality gives as;

$$d(y, x_k) \leq d(y, z) + d(z, x_k)$$

$$\Rightarrow d(z, x_k) \geq d(y, x_k) - d(y, z) = 2r_{x_k} - d(y, z) > 2r_{x_k} - r$$

$$\geq 2r_{x_k} - r_{x_k} = r_{x_k}.$$

$$\Rightarrow d(z, x_k) > r_{x_k} \Rightarrow z \notin B_M(x_k; r_{x_k})$$

$$\Rightarrow z \notin \bigcup_{k=1}^n B_M(x_k; r_{x_k}) \Rightarrow B_M(y; r) \cap (\bigcup_{k=1}^n B_M(x_k; r_{x_k})) = \emptyset$$

But $S \subseteq \bigcup_{k=1}^n B_M(x_k; r_{x_k}) \Rightarrow B_M(y; r) \cap S = \emptyset \Rightarrow B_M(y; r) \cap S - \{y\} = \emptyset.$

Therefore, y is not accumulation point of S (contradiction), Hence S is closed in

Proof (2):

Let *T* be an infinite subset of *S*. Want to show that: $\exists x \in S$ such that *x* is an accumulation point of *T*. By contrary suppose that *x* is not accumulation point of *T* for all $x \in S \Rightarrow \forall x \in S \exists$ an open ball $B_M(x; r_x)$ such that;

$$B_M(x; r_x) \cap T - \{x\} = \emptyset$$

$$\Rightarrow B_M(x; r_x) \cap T = \emptyset \text{ (if } x \notin T) \text{ or } B_M(x; r_x) \cap T = \{x\} \text{ (if } x \in T)$$

$$\Rightarrow B_M(x; r_x) \text{ contains at most one point of } T \forall x \in S.$$

The collection $\{B_M(x; r_x) | x \in S\}$ forms an open covering of S since $S \subseteq \bigcup_{x \in S} B_M(x; r_x)$. But S is compact, then \exists a finite subcovering say

 $B_M(x_1; r_1), B_M(x_2; r_2), \dots, B_M(x_n; r_n)$, i.e. $S \subseteq \bigcup_{k=1}^n B_M(x_k; r_k)$. Since $T \subseteq S \Rightarrow$ $T \subseteq \bigcup_{k=1}^n B_M(x_k; r_k) \dots$ (*). But $B_M(x_k; r_k) \forall (k = 1, 2, \dots, n)$ contains at most one point of *T*, therefore (from (*)) *T* is finite set (contradiction). Hence, $\exists x \in S$ such that *x* is an accumulation point of *T*.

Remark:

- i. In the Euclidean space Rⁿ, each of properties (1) and (2) is equivalent to compactness, i.e. In the Euclidean space Rⁿ, the following three statements are equivalent: S is compact in Rⁿ ⇔ S is closed and bounded in Rⁿ ⇔ every finite subset of S has an accumulation point in S.
- ii. In general, in any metric space (M, d), we have
 - **a.** S is compact in $M \Rightarrow S$ is closed and bounded in M.
 - **b.** *S* is closed and bounded in $M \neq S$ is compact in *M*.
 - **c.** *S* is compact in $M \Leftrightarrow$ every infinite subset of *S* has an accumulation point in *S*.

Exercise:

Consider the metric space \mathbb{Q} (of rational numbers) of the Euclidean space $(\mathbb{R}, |.|)$ and let *S* consists of the rational numbers in the open interval (a, b), where *a* and *b* are irrational. Show that $S = (a, b) \cap \mathbb{Q}$ is closed and bounded in \mathbb{Q} , but *S* is not compact in \mathbb{Q} .

Theorem:

Let S be a closed subset of a compact metric space M. Then S is compact in M.

Proof:

Let $\Omega = \{G_i \mid i \in I\}$ be an open covering of *S*, i.e. $S \subseteq \bigcup_{i \in I} G_i$. We show that a finite subcollection of Ω is also cover *S*. Since *S* is closed in $M \Rightarrow S^c$ is open in $M \Rightarrow \Omega \cup \{S^c\}$ forms an open covering of *M*. But *M* is compact, therefore \exists a finite subcovering say $\{G_{i_1}, G_{i_2}, ..., G_{i_n}, S^c\}$, i.e. $M = (\bigcup_{k=1}^n G_{i_k}) \cup S^c$. But

 $\subseteq M \implies S \subseteq (\bigcup_{k=1}^{n} G_{i_k}) \cup S^c. \quad \text{But} \qquad S \cap S^c = \emptyset \Rightarrow S \subseteq (\bigcup_{k=1}^{n} G_{i_k}) \Rightarrow \{G_{i_1}, G_{i_2}, \dots, G_{i_n}\} \text{ is a finite subcovering of } S \Rightarrow S \text{ is compact.}$

Theorem:

Let (S, d) be a metric subspace of a metric space (M, d) and let $X \subseteq S$. Then X is compact in S if and only if, X is compact in M.

Proof:

Suppose X is compact in S. Wanted: X is compact in M, i.e. wanted: every open covering of X in M contains a finite subcovering. So, assume $\Omega = \{G_i | i \in I\}$ be an open covering of X in M, i.e. $X \subseteq \bigcup_{i \in I} G_i$ and G_i is an open set in M, $\forall i \in I$. Since, $X = X \cap S \subseteq (\bigcup_{i \in I} G_i) \cap S = \bigcup_{i \in I} (G_i \cap S)$, hence the collection $\Omega' = \{H_i = G_i \cap S | i \in I\}$ of open sets in S forms an open covering of X in S. But X is compact in S, so Ω' contains a finite subcovering say $\{H_{i_1}, H_{i_2}, \dots, H_{i_n}\}$. That is, $X \subseteq \bigcup_{k=1}^n H_{i_k} = \bigcup_{k=1}^n (G_{i_k} \cap S) = (\bigcup_{k=1}^n G_{i_k}) \cap S$. Therefore, $X \subseteq \bigcup_{k=1}^n G_{i_k} \Rightarrow \{G_{i_1}, G_{i_2}, \dots, G_{i_n}\}$ is a finite subcovering of Ω . Thus, X is compact in M.

Conversely, assume X is compact in M. Wanted: X is compact in S, i.e. wanted: every open covering of X in S contains a finite subcovering. Let $\Omega' = \{H_i | i \in I\}$ be an open covering of X in S, i.e. $X \subseteq \bigcup_{i \in I} H_i$ and H_i is an open set in S, $\forall i \in$ I. That is, for every $i \in I$, there exists an open set G_i in M such that $H_i = G_i \cap S$. According to, $X \subseteq \bigcup_{i \in I} H_i = \bigcup_{i \in I} (G_i \cap S) = (\bigcup_{i \in I} G_i) \cap S$, we have $X \subseteq \bigcup_{i \in I} G_i$. That is, $\Omega = \{G_i | i \in I\}$ forms an open covering of X in M. But X is compact in M, so Ω contains a finite subcovering say $\{G_{i_1}, G_{i_2}, \dots, G_{i_n}\}$, i.e.;

 $X \subseteq \bigcup_{k=1}^{n} G_{i_{k}} \Rightarrow X = X \cap S \subseteq \left(\bigcup_{k=1}^{n} G_{i_{k}}\right) \cap S = \bigcup_{k=1}^{n} \left(G_{i_{k}} \cap S\right) = \bigcup_{k=1}^{n} H_{i_{k}}.$ Therefore, $X \subseteq \bigcup_{k=1}^{n} H_{i_{k}} \Rightarrow \Omega'$ contains a finite subcovering $\{H_{i_{1}}, H_{i_{2}}, \dots, H_{i_{n}}\}.$ Thus, X is compact in S.

Example:

Let ((0,1), ||) be a subspace of the Euclidean space $(\mathbb{R}, ||)$. The interval $(0, \frac{1}{2}]$ is closed and bounded subset of (0,1) as a subspace of \mathbb{R} . On the other hand, $(0, \frac{1}{2}]$ is bounded, but not closed in \mathbb{R} , so it is not compact in \mathbb{R} as an application of Hiene-Borel covering theorem and according to the above theorem $(0, \frac{1}{2}]$ is not compact in (0,1). This example is an illustration to the fact that, the closed and bounded subset of a metric space need not to be compact.

Sequences in metric spaces

Definition:

Let (M, d) be a metric space and let $\mathbb{Z}^+ = \{1, 2, 3, ...\}$ be the set of positive integer numbers. Any mapping $f: \mathbb{Z}^+ \to M$ is called a sequence in M.

Remarks:

i. A sequence in M assigns to each $n \in \mathbb{Z}^+$ a uniquely determined point $x_n \in M$, i.e.;

$$1 \to f(1) = x_1 \in M$$

$$2 \to f(2) = x_2 \in M$$

$$\vdots$$

$$n \to f(n) = x_n \in M$$

The points $x_1, x_2, ..., x_3$, ... are called the terms (elements) of the sequence f in M. The term $f(n) = x_n$ is called the n_{th} -term of f.

ii. We will denote the sequence $f: \mathbb{Z}^+ \to M$ by any one of the following notations:

$$\langle x_n \rangle_{n \in \mathbb{Z}^+} = \langle x_1 , x_2 , \dots \rangle = \langle x_n | n \in \mathbb{Z}^+ \rangle = \langle x_n \rangle$$

iii. We have to distinguished between the sequence $\langle x_n \rangle = \langle x_n | n \in \mathbb{Z}^+ \rangle$ and its range, which is denoted by to be the set = $\{x_n | n \in \mathbb{Z}^+\} = \{x_1, x_2, ...\}$.

Example:

In the Euclidean space \mathbb{R} ;

- i. Consider the sequence $\langle x_n \rangle = \langle (-1)^n | n \in \mathbb{Z}^+ \rangle = \langle -1, 1, -1, 1, ... \rangle$. The range of the above sequence is $T = \{x_n | n \in \mathbb{Z}^+\} = \{-1, 1\}$.
- ii. If b ∈ R, the sequence (x_n) = (b, b, ...), all of whose terms are equal to b, is called the constant sequence. The range of the above sequence is T = {b}.

Example:

In the Euclidean space \mathbb{R} , if $\langle x_n \rangle$ and $\langle y_n \rangle$ are sequences of real numbers then we can define:

- a. Sum: $\langle x_n \rangle + \langle y_n \rangle = \langle x_n + y_n \rangle$
- **b. Difference:** $\langle x_n \rangle \langle y_n \rangle = \langle x_n y_n \rangle$
- **c.** Multiplication: $\langle x_n \rangle$. $\langle y_n \rangle = \langle x_n, y_n \rangle$
- **d.** Multiplication by a scalar: if $c \in \mathbb{R}$, $c\langle x_n \rangle = \langle cx_n \rangle$
- e. Quotient: $\langle x_n \rangle / \langle y_n \rangle = \langle x_n / y_n \rangle$ provided that $y_n \neq 0$ for all $n \in \mathbb{Z}^+$.

For example, if $\langle x_n \rangle = \langle 2n \rangle = \langle 2, 4, 6, ... \rangle$ and $\langle y_n \rangle = \langle \frac{1}{n} \rangle = \langle 1, \frac{1}{2}, \frac{1}{3}, ... \rangle$ be two sequences of real numbers, Then;

1. $\langle 2n \rangle + \langle \frac{1}{n} \rangle = \langle 2n + \frac{1}{n} \rangle = \langle \frac{2n^2 + 1}{n} \rangle = \langle 3, \frac{9}{2}, \frac{19}{3}, \dots \rangle.$ 2. $\langle 2n \rangle - \langle \frac{1}{n} \rangle = \langle 2n - \frac{1}{n} \rangle = \langle 2n - \frac{1}{n} \rangle = \langle 3, \frac{7}{2}, \frac{17}{3}, \dots \rangle.$ 3. $\langle 2n \rangle. \langle \frac{1}{n} \rangle = \langle 2n. \frac{1}{n} \rangle = \langle 2 \rangle = \langle 2, 2, 2, \dots \rangle.$ 4. $3\langle 2n \rangle = \langle 6n \rangle = \langle 6, 12, 18, \dots \rangle.$ 5. $\langle 2n \rangle / \langle \frac{1}{n} \rangle = \langle 2n / \frac{1}{n} \rangle = \langle \frac{2n}{1/n} \rangle = \langle 2n^2 \rangle = \langle 2, 8, 18, \dots \rangle.$

Note that, if $\langle 1 + (-1)^n \rangle = \langle 0, 2, 0, 2, ... \rangle$, is a sequence of real numbers, therefore, $\langle 2n \rangle / \langle 1 + (-1)^n \rangle$ is not defined since some of the terms of the sequence $(1 + (-1)^n)$ are equal to 0.

Definition:

In the Euclidean space \mathbb{R} , a sequence $\langle x_n \rangle$ is called bounded above if $\exists M > 0$ such that $|x_n| \leq M$, $\forall n \in \mathbb{Z}^+$, while it is called bounded below if $\exists N > 0$ such that $N \leq |x_n|$, $\forall n \in \mathbb{Z}^+$.

Example:

The sequence of real numbers $\langle \frac{1}{n} \rangle = \langle 1, \frac{1}{2}, \frac{1}{3}, ... \rangle$ is bounded above since $\exists a \text{ positive real number } 2$ such that $\left| \frac{1}{n} \right| \leq 2, \forall n \in \mathbb{Z}^+$. As well as, $\langle \frac{1}{n} \rangle$ is bounded below since $\exists a \text{ positive real number } 0$ such that $0 \leq \left| \frac{1}{n} \right|$, $\forall n \in \mathbb{Z}^+$.

Definition:

In the Euclidean space \mathbb{R} , a sequence $\langle x_n \rangle$ is called increasing if;

 $x_n \leq x_{n+1} \ \forall n \in \mathbb{Z}^+;$

while it is called decreasing if, $x_n \ge x_{n+1} \quad \forall n \in \mathbb{Z}^+$.

Example :

In the Euclidean space \mathbb{R} , a sequence $\langle \frac{1}{n} \rangle$ is decreasing since;

$$x_{n+1} = \frac{1}{n+1} < \frac{1}{n} = x_n, \ \forall \ n \in \mathbb{Z}^+.$$

The sequence $\langle n \rangle = \langle 1, 2, 3, ... \rangle$ is increasing since;

$$x_n = n < n + 1 = x_{n+1}, \ \forall \ n \in \mathbb{Z}^+.$$

The sequence $\langle (-1)^n | n \in \mathbb{Z}^+ \rangle = \langle -1, 1, -1, 1, ... \rangle$ is neither increasing nor decreasing.

Definition (Convergent sequence in a metric space):

A sequence $\langle x_n \rangle$ of points in a metric space (M, d) is said to be converge if \exists a point $p \in M$ with the following property:

 $\forall \, \epsilon > 0 \; , \; \exists \, N \in \mathbb{Z}^+ \; \exists \; d(x_n \, , p) < \epsilon , \forall n \geq N ... (*)$

In this case, we say that $\langle x_n \rangle$ is converges to p in M and we write;

$$x_n \to p \text{ as } n \to \infty \text{ or } x_n \xrightarrow[n \to \infty]{} p$$

If there is no such p in M, the sequence $\langle x_n \rangle$ is said to be diverge.

Remark:

1. The above definition of convergence implies that;

$$x_n \to p \text{ as } n \to \infty \iff d(x_n, p) \to 0 \text{ as } n \to \infty.$$

i.e. a sequence $\langle x_n \rangle$ converges to p in M if, and only if, the sequence $\langle d(x_n, p) \rangle$ of positive real numbers converges to 0 in \mathbb{R} .

2. The convergence condition (*) can be written as;

$$\forall \ \epsilon > 0 \ , \ \exists \ N \in \mathbb{Z}^+ \ni \ x_n \in B(p \ ; \ \epsilon), \ \forall n \ge N.$$

i.e. the open ball $B(p; \epsilon)$ contains all the terms of the sequence $\langle x_n \rangle$ except a finite number of terms $x_1, x_2,...$ and x_{N-1} as shown in the following figure:

3. The greatest integer of x denoted by [x] is defined as follows:

 $[x] = \begin{cases} x & \text{if } x \in \mathbb{Z} \\ \text{the nearest integer no. to } x \text{ from the left} & \text{if } x \notin \mathbb{Z} \end{cases}$ In fact, [0] = 0, [0.79] = 0, [1] = 1, [1.9] = 1. In general, $[x] \le x$, $\forall x \in \mathbb{R}$, also $[x] + 1 > x \forall x \in \mathbb{R}$

Example :

In the Euclidean metric space \mathbb{R} , the sequence $\langle \frac{1}{n} \rangle = \langle 1, \frac{1}{2}, ... \rangle$ converges to $0 \in \mathbb{R}$.

Solution: Let $\epsilon > 0$. Wanted: $\exists N \in Z^+ \ni n \in N \Rightarrow \left|\frac{1}{n} - 0\right| < \epsilon$.

For a moment assume that;

$$\begin{aligned} \left|\frac{1}{n} - 0\right| < \epsilon \implies \left|\frac{1}{n}\right| < \epsilon \implies \frac{1}{n} < \epsilon \implies \frac{1}{\epsilon} < n \implies n > \frac{1}{\epsilon}. \end{aligned}$$

So, if we choose $N = \left[\frac{1}{\epsilon}\right] + 1 \in \mathbb{Z}^+$, then $\forall n \ge N \implies n \ge \left[\frac{1}{\epsilon}\right] + 1 \implies n > \frac{1}{\epsilon}$
$$\implies \frac{1}{n} < \epsilon \implies \left|\frac{1}{n}\right| < \epsilon \implies \left|\frac{1}{n} - 0\right| < \epsilon. \end{aligned}$$

Therefore, $\langle \frac{1}{n} \rangle$ converges to 0 in \mathbb{R} .

Theorem:

A sequence in a metric space (M, d) can converge to at most one point in M. **Proof:**

Assume that $x_n \to p$ as $n \to \infty$ and $y_n \to q$ as $n \to \infty$ in *M*. We will prove that p = q. By contrary suppose $p \neq q$ and let $\epsilon = d(p,q) > 0$. As $x_n \to p \Rightarrow$

 $\exists N_1 \in \mathbb{Z}^+$ such that $d(x_n, p) < \frac{\epsilon}{2}$, $\forall n \ge N_1$. Moreover as $y_n \to q \Rightarrow \exists N_2 \in \mathbb{Z}^+$ such that $d(y_n, q) < \frac{\epsilon}{2}$, $\forall n \ge N_2$. The triangle inequality gives us;

$$\epsilon = d(p,q) \le d(p,x_n) + d(x_n,q) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \Longrightarrow \epsilon = d(p,q) < \epsilon;$$

and this is a contradiction. Therefore p = q.

Remark :

If a sequence $\langle x_n \rangle$ is converges in a metric space M, the unique point to which it converges, say p, is called the limit point of the sequence and it is denoted by, $p = \lim_{n \to \infty} x_n$.

Remark :

The convergence or divergence of a sequence depends on the underlying space as well as on the metric as we illustrate in the following:

Example 1:

From a previous example, we know that the sequence $\langle \frac{1}{n} \rangle$ is converge in the Euclidean space \mathbb{R} to 0. The same sequence is diverge in the Euclidean subspace = (0,1], since $0 \notin S$.

Example 2:

The sequence $\langle \frac{1}{n} \rangle$ is converge to 0 in the Euclidean metric space $(\mathbb{R}, | |)$. The same sequence does not converge to 0 in the discrete metric space (\mathbb{R}, d) . In fact, if we suppose that $\frac{1}{n} \to 0$ as $n \to \infty \Rightarrow d\left(\frac{1}{n}, 0\right) \to 0$ as $n \to \infty$. But $\frac{1}{n} \neq 0, \forall n = 1, 2, 3, ...$ and $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is the discrete metric, i.e.

$$d(x,y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$$

Therefore, $d\left(\frac{1}{n}, 0\right) = 1 \forall n = 1, 2, 3, ...$ Hence $d\left(\frac{1}{n}, 0\right) = 1 \neq 0 \text{ as } n \neq \infty$, this is a contradiction. Thus $\frac{1}{n} \neq 0$ as $n \neq \infty$ in the discrete space (\mathbb{R}, d).

Exercises:

- 1. In the Euclidean space \mathbb{R} , let $\langle x_n \rangle$ and $\langle y_n \rangle$ be two sequences such that $x_n \to p$ and $y_n \to q$ as $n \to \infty$. Prove that the following :
 - *a.* Sum: $\langle x_n \rangle + \langle y_n \rangle$ converges to p + q.
 - **b. Difference:** $\langle x_n \rangle \langle y_n \rangle$ converges to p q.
 - c. Multiplication: $\langle x_n \rangle$. $\langle y_n \rangle$ converges to pq.
 - *d*. Multiplication by a scalar: if $\in \mathbb{R}$, $c\langle x_n \rangle$ converges to cp.
- 2. In the Euclidean space \mathbb{R} , prove that the following :
 - *a.* If $0 \le y_n \le x_n$ for all $n \in \mathbb{Z}^+$ and if $\langle x_n \rangle$ converge to 0, then $\langle y_n \rangle$ converge to 0.
 - **b.** Let $\langle x_n \rangle$ be decreasing and bounded below. If $T = \{x_n | n \in \mathbb{Z}^+\}$ is the range of $\langle x_n \rangle$, then $\langle x_n \rangle$ is converge to *Inf* T (Give an example to explain that).
 - *c*. Let $\langle x_n \rangle$ be increasing and bounded above. If $T = \{x_n \mid n \in \mathbb{Z}^+\}$ is the range of $\langle x_n \rangle$, then $\langle x_n \rangle$ is converge to *Sup T* (Give an example to explain that).

Theorem:

In the metric space (M, d), assume that $\langle x_n \rangle$ is a convergent sequence such that $x_n \to p$ and let $T = \{x_1, x_2, ...\}$ be the range of $\{x_n\}$. Then:

- i. *T* is bounded.
- ii. p is an adherent point of T.

Proof (i):

Wanted: *T* is bounded, i.e. \exists an open ball $B_M(p; r)$ such that $T \subseteq B_M(p; r)$. Let $\epsilon = 1$. Since $x_n \to p$ as $n \to \infty$, hence $\exists N \in \mathbb{Z}^+ \ni d(x_n, p) < 1, \forall n \ge N$ $\Rightarrow x_n \in B_M(p; 1) \forall n \ge N \Rightarrow x_n \in B_M(p; 1) \forall n \ge N$. Let $r = 1 + Max\{d(p, x_1), d(p, x_2), \dots, d(p, x_{N-1})\}.$

In fact, if $\underline{n \ge N}$, $d(x_n, p) < 1 < r \implies x_n \in B_M(p; r)$ and if $\underline{n < N}$, $d(x_n, p) \le Max\{d(p, x_1), d(p, x_2), \dots, d(p, x_{N-1})\} < r \implies x_n \in B_M(p; r)$ for all $n \ge 1 \implies T \subseteq B_M(p; r)$. Hence T is bounded in M.

<u>Proof (ii):</u>

Wanted: $p \in \overline{T}$ (i.e. wanted: $\forall r > 0$, $B_M(p;r) \cap T \neq \emptyset$). Let r > 0. Since $x_n \to p$ as $n \to \infty \Rightarrow \exists N \in \mathbb{Z}^+ \ni d(x_n, p) < r, \forall n \ge N$. $\Rightarrow x_n \in B_M(p;r), \forall n \ge N$. But $x_n \in T \forall n \ge N \Rightarrow B_M(p;r) \cap T \neq \emptyset \Rightarrow p$ is an adherent point of T.

Remark:

- If ⟨x_n⟩ is a convergent sequence in a metric space M such that x_n → p and let T = {x₁, x₂, ...} be the range of ⟨x_n⟩, the point p may not be an accumulation point of T. For example, in the Euclidean space R, the sequence ⟨x_n⟩ = ⟨1,1,2,2,2,...⟩ is converge and converges to 2. The range of ⟨x_n⟩, T = {1,2} is a finite subset of R which has no accumulation point in R.Thus, 2 is not an accumulation point of T.
- 2. If $x_n \rightarrow p$ and T is infinite set, then p is an accumulation point of T since every open ball will contain infinitely points of T.

Theorem:

Given a metric space (M, d) and a subset $S \subseteq M$. If a point $p \in M$ is an adherent point of , then there is a sequence $\langle x_n \rangle$ in S which converge to p. **Proof:**

Since $p \in M$ is an adherent point of $\Rightarrow \forall r > 0$ $B_M(p;r) \cap S \neq \emptyset$. Let $= \frac{1}{n}$, $n=1,2,3,...\Rightarrow B_M(p;r) \cap S \neq \emptyset \quad \forall n \in \mathbb{Z}^+$. Thus, when: $n = 1 \Rightarrow B_M(p;1) \cap S \neq \emptyset \Rightarrow \exists x_1 \in B_M(p;1) \cap S \Rightarrow x_1 \in S$ and $d(x_1,p) < 1$ $n = 2 \Rightarrow B_M(p;2) \cap S \neq \emptyset \Rightarrow \exists x_2 \in B_M(p;2) \cap S \Rightarrow x_2 \in S$ and $d(x_2,p) < \frac{1}{2}$ $n = 3 \Rightarrow B_M(p;3) \cap S \neq \emptyset \Rightarrow \exists x_3 \in B_M(p;3) \cap S \Rightarrow x_3 \in S$ and $d(x_3,p) < \frac{1}{3}$ Therefore, $\forall n \in \mathbb{Z}^+ \exists$ a point $x_n \in S$ with $d(x_n,p) < \frac{1}{n}$. Thus, we have a sequence $\langle x_n \rangle$ in S satisfied $d(x_n,p) \to 0$ as $n \to \infty$. Therefore, $x_n \to p$ as $n \to \infty$.

Definition (Subsequence):

Let $f: \mathbb{Z}^+ \to M$ be a sequence $\langle x_n \rangle$ in M, where $f(n) = x_n$, $\forall n \in \mathbb{Z}^+$ and let $k: \mathbb{Z}^+ \to \mathbb{Z}^+$ be an order preserving function, (i.e. $\forall m, n \in \mathbb{Z}^+$, if m < n, then k(m) < k(n)). Then the composition $f \circ k: \mathbb{Z}^+ \to M$ which is defined by, $f \circ k(n) = f(k(n)) = x_{k(n)}$ is called a subsequence $\langle x_{k(n)} \rangle$ of $\langle x_n \rangle$.

Example:

Consider the sequence $f = \langle \frac{1}{n} \rangle$ in \mathbb{R} and let $k: \mathbb{Z}^+ \to \mathbb{Z}^+$ be the order preserving function that defined as, $k(n) = 2^n$, $\forall n \in \mathbb{Z}^+$. Then $f \circ k = \langle \frac{1}{2^n} \rangle$ is a subsequence of $\langle \frac{1}{n} \rangle$. As well as each of the sequences $\langle \frac{1}{2n} \rangle$, $\langle \frac{1}{2n+1} \rangle$, $\langle \frac{1}{3^n} \rangle$ is a subsequence of $\langle \frac{1}{n} \rangle$. But the sequence $\langle \frac{1}{2}, 1, \frac{1}{4}, \frac{1}{3}, \frac{1}{6}, \frac{1}{5}, \dots \rangle$ is not a subsequence of $\langle \frac{1}{n} \rangle$.

Exercise: In a metric space (M d), prove that a sequence $\{x_n\}$ converges to p if, and only if, every subsequence $\langle x_{k(n)} \rangle$ converges to p.

Cauchy sequences:

Definition:

A sequence $\langle x_n \rangle$ in a metric space (*M d*) is called a Cauchy sequence, if it is satisfy the following condition:

 $\forall \epsilon > 0 , \exists N \in \mathbb{Z}^+ \ni d(x_m, x_n) < \epsilon, \forall m, n \ge N.$

Example:

In the Euclidean space \mathbb{R} , the sequence $\langle x_n \rangle = \langle \frac{1}{n} \rangle$ is a Cauchy sequence.

<u>Sol :</u>

Let $\epsilon > 0$. Wanted: $\exists N \in \mathbb{Z}^+ \ni d(x_n, x_m) < \epsilon, \forall m, n \ge N$. So, assume that there exists such *N*, satisfied;

$$|x_m - x_n| < \epsilon, \forall m, n \ge N.$$

$$\Rightarrow |x_m - x_n| = \left|\frac{1}{m} - \frac{1}{n}\right| = \left|\frac{1}{m} + (-\frac{1}{n})\right| \le \left|\frac{1}{m}\right| + \left|-\frac{1}{n}\right| = \frac{1}{m} + \frac{1}{n}.$$

$$\Rightarrow |x_m - x_n| \le \frac{1}{m} + \frac{1}{n}.$$

Since, $n, m \ge N \Rightarrow \frac{1}{m} \le \frac{1}{N}$ and $\frac{1}{n} \le \frac{1}{N}$, hence $|x_m - x_n| \le \frac{1}{N} + \frac{1}{N} = \frac{2}{N}$

So, if we choose the positive integer $N = \left[\frac{2}{\epsilon}\right] + 1$, that satisfied;

$$N > \frac{2}{\epsilon} \Rightarrow \frac{1}{N} < \frac{\epsilon}{2} \Rightarrow \frac{2}{N} < \epsilon.$$

Therefore, $|x_m - x_n| \le \frac{2}{N} < \epsilon$, $\forall m, n \ge N$ and $\langle x_n \rangle$ is a Cauchy sequence. *Exercise:*

Let (S, d) be a metric subspace of a metric space (M, d). Prove that, a sequence $\langle x_n \rangle$ is a Cauchy sequence in S if, and only if, $\langle x_n \rangle$ is a Cauchy sequence in M.

Theorem:

In a metric space (M, d), every convergent sequence is Cauchy sequence.

Proof: Let $\langle x_n \rangle$ be a convergent sequence in M and $x_n \to p$ with $p \in M$. Wanted: $\langle x_n \rangle$ is a Cauchy sequence in M. Let $\epsilon > 0$. Wanted: $\exists N \in \mathbb{Z}^+ \ni d(x_n, x_m) < \epsilon, \forall m, n \ge N$.

Since $\epsilon > 0$ and $x_n \to p \Rightarrow \exists N \in \mathbb{Z}^+ \ni d(x_n, p) < \frac{\epsilon}{2}, \forall n \ge N$. So, if $m \ge N$, then $d(x_m, p) < \frac{\epsilon}{2}$. Now, if $n \ge N$ and $m \ge N$, by the triangle inequality we have:

$$d(x_n, x_m) \le d(x_n, p) + d(x_m, p) < \frac{\epsilon}{2} + \frac{\epsilon}{2} < \epsilon \Rightarrow \ d(x_n, x_m) < \epsilon$$

Thus, $\langle x_n \rangle$ is a Cauchy sequence in *M*.

Example:

The converse of the above theorem needs not to be true in general. For example, the metric subspace (S = (0,1], |.|) of the Euclidean metric space $(\mathbb{R}, |.|)$. The sequence $\langle x_n \rangle = \langle \frac{1}{n} \rangle$ is a sequence of points in S. We know that, $\langle \frac{1}{n} \rangle$ is a Cauchy sequence in \mathbb{R} , and $\frac{1}{n} \to 0$. Thus, $\langle \frac{1}{n} \rangle$ is a Cauchy sequence in S, while it is diverge in S since $0 \notin S$.

Complete metric space:

Definition:

A metric space (M, d) is called complete, if every Cauchy sequence in M is converge in M. A subset S of M is called *complete metric subspace* of (M, d), if S is complete as a metric space.

Example:

The Euclidean space \mathbb{R}^k is complete, $(k \ge 1)$.

Proof: Let $\langle x_n \rangle$ be a Cauchy sequence in \mathbb{R}^k . Wanted, $\langle x_n \rangle$ is a convergent sequence in \mathbb{R}^k . Wanted: $\exists p \in \mathbb{R}^k \ni x_n \to p$.

Let $T = \{x_n : n \in \mathbb{Z}^+\}$ be the range of the sequence $\langle x_n \rangle$. There are two cases to be discussed:

<u>The first one</u>, if *T* is finite, then all except a finite number of the terms of the sequence $\langle x_n \rangle$ are equal and hence $\langle x_n \rangle$ is converge to this common value. This show that \mathbb{R}^k is complete in this case.

The second one, if *T* is infinite. We will use the Bolzano-Weierstrass theorem to show that *T* has an accumulation point $p \in \mathbb{R}^k$, and then we show that $x_n \to p$. To do this, we need first to show *T* is bounded set in \mathbb{R}^k .

So, let $\epsilon = 1$. Since $\langle x_n \rangle$ is a Cauchy sequence in \mathbb{R}^k , hence;

$$\exists N \in \mathbb{Z}^+ \ni ||x_n - x_m|| < 1, \forall n, m \ge N.$$

Thus, if $n \ge N$ we have $||x_n - x_N|| < 1$. Let;

 $r' = Max\{||x_1||, ||x_2||, ..., ||x_N||\}$ and r = 1 + r'.

However, if $1 \le n \le N$, we have $d(x_n, 0) = ||x_n|| \le r' < r$. As well as, if n > N, we have $d(x_n, 0) = ||x_n|| \le ||x_n - x_N|| + ||x_N|| < 1 + r' = r$. That is; $x_n \in B(0; r) \ \forall \ n \in \mathbb{Z}^+ \Rightarrow T \subseteq B(0; r).$

Therefore, T is bounded set in \mathbb{R}^k .

Now, in our second case *T* is infinite and bounded, so from Bolzano-weierstrass theorem, *T* has an accumulation point say, $p \in \mathbb{R}^k$. We need only to show that, $x_n \to p$.

Let $\epsilon > 0$. Wanted: $\exists N \in \mathbb{Z}^+ \ni ||x_n - p|| < \epsilon, \forall n \ge N$. Since $\epsilon > 0$ and $\langle x_n \rangle$ is a Cauchy sequence in \mathbb{R}^k , hence;

$$\exists N \in \mathbb{Z}^+ \ni ||x_n - x_m|| < \frac{\epsilon}{2}, \forall n, m \ge N$$

Since p is an accumulation point of T, hence $B(p; \frac{\epsilon}{2})$ contains infinitely many points of T and there is at least a point x_m with $m \ge N$ such that $x_m \in B(p; \frac{\epsilon}{2})$, i.e. $||x_m - p|| < \frac{\epsilon}{2}$. By the triangle inequality, for $n \ge N$, we have;

$$||x_n - p|| \le ||x_n - x_m|| + ||x_m - p|| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \Rightarrow ||x_n - p|| < \epsilon.$$

Therefore, $x_n \to p$ and \mathbb{R}^k is complete.

Example:

For $n \ge 1$, The space (\mathbb{R}^n , d) with the metric $d: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ that defined as;

$$d(x, y) = Max\{|x_1 - y_1|, |x_2 - y_2|, ..., |x_n - y_n|\};$$

for $x = (x_1, x_2, ..., x_n), y = (y_1, y_2, ..., y_n) \in \mathbb{R}^n$, is a complete metric space.

Proof: Let $\langle x_m \rangle$ be a Cauchy sequence in \mathbb{R}^n with respect to the metric d. Wanted: $\exists p \in \mathbb{R}^n \ni x_m \to p$ with respect to the metric d.

Let
$$\epsilon > 0$$
. Since $\langle x_m \rangle$ be a Cauchy sequence in \mathbb{R}^n with respect to the metric
 $d \Rightarrow \exists N \in \mathbb{Z}^+ \ni d(x_m, x_r) < \epsilon, \forall m, r \ge N$, where $x_m = (x_m^1, x_m^2, ..., x_m^n)$,
 $x_r = (x_r^1, x_r^2, ..., x_r^n) \in \mathbb{R}^n$.
Since, for $m, r \ge N$, $d(x_m, x_r) < \epsilon$;
 $\Rightarrow Max\{|x_m^1 - x_r^1|, |x_m^2 - x_r^2|, ..., |x_m^n - x_r^n|\} < \epsilon$
 $\Rightarrow |x_m^1 - x_r^1| < \epsilon, |x_m^2 - x_r^2| < \epsilon, ..., |x_m^n - x_r^n| < \epsilon$
 $\Rightarrow \langle x_m^1 \rangle, \langle x_m^2 \rangle, ..., \langle x_m^n \rangle$ are Cauchy sequences in \mathbb{R} with respect to the
Euclidean metric $|.|: \mathbb{R} \to \mathbb{R}$. But the Euclidean metric $(\mathbb{R}, |.|)$ is complete (see
the above example). Thus, there are $p_1, p_2, ..., p_n \in \mathbb{R}$ such that $x_m^1 \to p_1$,
 $x_m^2 \to p_2, ..., x_m^n \to p_n$. Put $p = (p_1, p_2, ..., p_n) \in \mathbb{R}^n$. As an exercise, show that

 $x_m = (x_m^1, x_m^2, \dots, x_m^n) \rightarrow (p_1, p_2, \dots, p_n) = p \Rightarrow x_m \rightarrow p \text{ in } (\mathbb{R}^n, d).$ Hence, (\mathbb{R}^n, d) is complete.

Continuous functions:

Definition:

Let (S, d_s) and (T, d_T) be metric spaces and $f: S \to T$ be a function. The function f is said to be continuous at a point $p \in S$ if,

 $\forall \epsilon > 0$, $\exists \delta > 0$ (depend on ϵ and p) \exists

 $d_S(x,p) < \delta \Rightarrow d_T(f(x),f(p)) < \epsilon.$

Or equivalently: $\forall \epsilon > 0$, $\exists \delta > 0$ such that $f(B_S(p; \delta)) \subseteq B_T(f(p); \epsilon)$.

We say that, f is continuous on a set $A \subseteq S$ if, f is continuous at every point of A.

Remark:

If *p* is an isolated point of *S*, i.e. $p \notin S' \cap S$, then every function $f: S \to T$ defined at *p* will be continuous at *p*. To explain that: let $\epsilon > 0$. Since $p \notin S' \cap S$, hence $\exists \delta > 0 \ni B_S(p; \delta) \cap S - \{p\} = \emptyset \Rightarrow B_S(p; \delta) \cap S = \{p\}$. Thus, $B_S(p; \delta) = \{p\}$. In fact, $f(p) \in B_T(f(p); \epsilon)$, so;

$$f(B_{\mathcal{S}}(p;\delta)) = f(\{p\}) = \{f(p)\} \subseteq B_T(f(p);\epsilon).$$

Therefore, f is continuous at p.

Theorem:

Let $f: S \to T$ be a function from a metric space (S, d_S) to another metric space (T, d_T) , and assume that $p \in S$. Then f is continuous at $p \in S$ if, and only if, for every sequence $\langle x_n \rangle$ in S converges to p, the sequence $\langle f(x_n) \rangle$ in Tconverges to f(p), i.e. $\lim_{n\to\infty} f(x_n) = f(\lim_{n\to\infty} x_n)$.

Proof :

Suppose that f is continuous at $p \in S$ and let $\langle x_n \rangle$ be a sequence in S converges to p. Wanted: the sequence $\langle f(x_n) \rangle$ converges to f(p).

Let $\epsilon > 0$. Wanted: $\exists N \in \mathbb{Z}^+ \ni d_T(f(x_n), f(p)) < \epsilon, \forall n \ge N$.

Since $f: S \to T$ is continuous at $p \in S \Rightarrow \exists \delta > 0$ such that if $x \in S$ with,

$$d_{S}(x,p) < \delta \Rightarrow d_{T}(f(x),f(p)) < \epsilon \quad \dots \dots (1)$$

Since $\delta > 0$ and $x_n \to p$ in $\Rightarrow \exists N \in \mathbb{Z}^+ \ni d_s(x_n, p) < \delta, \forall n \ge N$. From (1) above, $d_T(f(x_n), f(p)) < \epsilon, \forall n \ge N$. Therefore, $\langle f(x_n) \rangle$ in *T* converges to f(p).

Conversely, suppose that for every sequence $\langle x_n \rangle$ in S converges to p, the sequence $\langle f(x_n) \rangle$ in T converges to f(p). Wanted: f is continuous at $\in S$.

By contrary, suppose that f is not continuous at $p \in S \Rightarrow \exists \epsilon > 0$ such that $\forall \delta > 0, \exists x \in S$ such that;

$$d_s(x,p) < \delta$$
 and $d_T(f(x), f(p)) \ge \epsilon$.

Let $\delta = \frac{1}{n}$, $n \in \mathbb{Z}^+$. So; if $n = 1 \Rightarrow \delta = 1, \exists x_1 \in S \Rightarrow d_s(x_1, p) < 1$ and $d_T(f(x_1), f(p)) \ge \epsilon$; if $n = 2 \Rightarrow \delta = \frac{1}{2}, \exists x_2 \in S \Rightarrow d_s(x_2, p) < \frac{1}{2}$ and $d_T(f(x_2), f(p)) \ge \epsilon$; if $n \in \mathbb{Z}^+ \Rightarrow \delta = \frac{1}{n}, \exists x_n \in S \Rightarrow d_s(x_n, p) < \frac{1}{n}$ and $d_T(f(x_n), f(p)) \ge \epsilon$.

Therefore, we will obtain a sequence $\langle x_n \rangle$ in *S* such that;

$$d_s(x_n, p) < \frac{1}{n}$$
, but $d_T(f(x_n), f(p)) \ge \epsilon$.

That means, $\langle x_n \rangle$ is sequence in S converges to $p \in S$, but the sequence $\langle f(x_n) \rangle$ in T is not converges to f(p) and this is a contradiction. Thus, $f: S \to T$ is continuous at $p \in S$.

Theorem:

Let (S, d_S) , (T, d_T) and (U, d_U) be metric spaces. Let $f: S \to T$ and $g: T \to U$ be functions, and let $g \circ f: S \to U$ be the composite function defined on *S* by;

$$g \circ f(x) = g(f(x))$$
, for $x \in S$.

If f is continuous at $p \in S$ and g is continuous at $f(p) \in T$, then $g \circ f$ is continuous at p.

Proof: Let $\epsilon > 0$. Wanted: $g \circ f$ is continuous at $p \in S$, i.e. wanted, $\exists \delta > 0$ such that;

$$d_{S}(x,p) < \delta \ \Rightarrow d_{U}(g(f(x)),g(f(p))) < \epsilon$$

Since $\epsilon > 0$ and $g: T \to U$ is continuous at $f(p) \Rightarrow \exists \delta_1 > 0 \ni$

$$d_T(y, f(p)) < \delta_1 \Rightarrow d_U(g(y), g(f(p))) < \epsilon \dots \dots (1)$$

Since $\delta_1 > 0$ and $f: S \to T$ is continuous at $p \Rightarrow \exists \delta > 0 \ni$;

$$d_{S}(x,p) < \delta \Rightarrow d_{T}(f(x),f(p)) < \delta_{1} \dots \dots (2)$$

Form (1) and (2) above we have;

$$d_{S}(x,p) < \delta \Rightarrow d_{T}(f(x),f(p)) < \delta_{1} \Rightarrow d_{U}(g(f(x)),g(f(p))) < \epsilon.$$

Therefore, $g \circ f$ is continuous at $p \in S$.

Remark:

Let $f: X \to Y$ be a function from a set X into a set Y and let $A \subseteq X, B \subseteq Y$. Then:

1. $f(A) = \{y \in Y | y = f(x), x \in A\} = \{f(x) \in Y | x \in A\}$

2.
$$f^{-1}(B) = \{x \in X | f(x) \in B\}$$

- 3. $f^{-1}f(A) \supseteq A$ and $f^{-1}f(A) = A \Leftrightarrow f$ is onto.
- 4. $ff^{-1}(B) \subseteq B$ and $ff^{-1}(B) = B \iff f$ is one-to-one.

Theorem:

Let (S, d_S) and (T, d_T) be metric spaces and let $f: S \to T$ be a function. Then:

- 1. f is continuous on S if, and only if, $f^{-1}(B)$ is an open set in S for every open set B in T.
- f is continuous on in S if, and only if, f⁻¹(B) is a closed set in S for every closed set B on T.

Proof:

For (1): Suppose that f is continuous on S and let B be an open set in T. Wanted: $f^{-1}(B)$ is an open set in S, i.e. wanted: each point in $f^{-1}(B)$ is an interior point of $f^{-1}(B)$.

Let $p \in f^{-1}(B)$. Wanted: $\exists \delta > 0 \exists B_S(p; \delta) \subseteq f^{-1}(B)$.

Since $p \in f^{-1}(B) \Rightarrow f(p) \in B$. But *B* is open set in $T \Rightarrow f(p)$ is an interior point of $B \Rightarrow \exists \epsilon > 0 \Rightarrow B_T(f(p); \epsilon) \subseteq B \dots (*)$

Since $\epsilon > 0$ and $f: S \to T$ is continuous at $\in S \Rightarrow \exists \delta > 0$, such that;

$$f(B_{S}(p;\delta)) \subseteq B_{T}(f(p);\epsilon)$$

$$\Rightarrow f^{-1}f(B_{S}(p;\delta)) \subseteq f^{-1}(B_{T}(f(p);\epsilon))$$

But $B_S(p;\delta) \subseteq f^{-1}f(B_S(p;\delta)) \Rightarrow B_S(p;\delta) \subseteq f^{-1}(B_T(f(p);\epsilon)) \dots (*2)$ From (*) we have, $f^{-1}(B_T(f(p);\epsilon)) \subseteq f^{-1}(B) \dots (*3)$

From (* 2) and (* 3), we have $B_S(p; \delta) \subseteq f^{-1}(B)$. Thus, $f^{-1}(B)$ is an open set in *S*.

Conversely, assume that $f^{-1}(B)$ is open in *S*, for every open set *B* in *T*. Wanted: *f* is continuous on *S*.

Let $p \in S$. Wanted: *f* is continuous at $p \in S$. Let $\epsilon > 0$. Wanted:

 $\exists \delta > 0 \ni f(B_S(p; \delta)) \subseteq B_T(f(p); \epsilon).$

Since $B_T(f(p); \epsilon)$ is open set in T containing f(p), hence $f^{-1}(B_T(f(p); \epsilon))$ is open set in S containing p, i.e. $p \in f^{-1}(B_T(f(p); \epsilon)) \Rightarrow p$ is an interior point of $f^{-1}(B_T(f(p); \epsilon)) \Rightarrow \exists \delta > 0 \Rightarrow B_S(p; \delta) \subseteq f^{-1}(B_T(f(p); \epsilon));$

 $\Rightarrow \exists \delta > 0 \ \ni \ f(B_{\mathcal{S}}(p;\delta)) \subseteq ff^{-1}(B_{\mathcal{T}}(f(p);\epsilon)).$

But, $ff^{-1}(B_T(f(p);\epsilon)) \subseteq B_T(f(p);\epsilon) \Rightarrow f(B_S(p;\delta)) \subseteq B_T(f(p);\epsilon)$. Thus f is continuous at p.

For (2): Suppose f is continuous on S and let B be a closed set in T. Wanted: $f^{-1}(B)$ is a closed set in S, i.e. wanted: $S - f^{-1}(B)$ is an open set in S.

Since *B* is closed in $T \Rightarrow T - B$ is open in *T*. But *f* is continuous on $S \Rightarrow$ from part (1) above, $f^{-1}(T - B)$ is an open set in *S*. Since;

$$f^{-1}(T-B) = f^{-1}(T) - f^{-1}(B) = S - f^{-1}(B).$$

 $\Rightarrow S - f^{-1}(B)$ is an open set in $S \Rightarrow f^{-1}(B)$ is a closed set in S.

Conversely, assume $f^{-1}(B)$ is closed in S for closed set B in T. Wanted: f is continuous on S.

Let A be an open set in T. Wanted: $f^{-1}(A)$ is open in S, (i.e. we will use part (1) above to show our aim). Since A is open in $T \Rightarrow T - A$ is closed in $T \Rightarrow f^{-1}(T - A)$ is closed in S, (this implies from our assumption). Since; $f^{-1}(T - A) = S - f^{-1}(A) \Rightarrow S - f^{-1}(A)$ is closed in S.

 $\Rightarrow S - (S - f^{-1}(A))$ is open in S.

But $S - (S - f^{-1}(A)) = f^{-1}(A) \Rightarrow f^{-1}(A)$ is open in S. Thus, f is continuous on S.

Theorem:

Let $f: S \to T$ be a continuous function from a metric space (S, d_S) into a metric space (T, d_T) . If X is a compact subset of S, then f(X) is compact subset of T, in particular f(X) is closed and bounded.

Proof: Let $\{G_i | i \in I\}$ be an open covering of f(X), i.e. $f(X) \subseteq \bigcup_{i \in I} G_i$, where G_i is open in $T, \forall i \in I$. Wanted: $\{G_i | i \in I\}$ contains a finite subcover of f(X).

According, $f(X) \subseteq \bigcup_{i \in I} G_i$, we have $f^{-1}(f(X)) \subseteq f^{-1}(\bigcup_{i \in I} G_i)$.

Since, $X \subseteq f^{-1}f(X)$ and $f^{-1}(\bigcup_{i \in I} G_i) = \bigcup_{i \in I} f^{-1}(G_i)$, hence $X \subseteq \bigcup_{i \in I} f^{-1}(G_i)$. But G_i is open in T and f is continuous on S, therefore $f^{-1}(G_i)$ is open in S, $\forall i \in I \Rightarrow \{f^{-1}(G_i) | i \in I\}$ froms an open covering of X. But X is compact in S

⇒ ∃ a finite subcover of $\{f^{-1}(G_i) | i \in I\}$ for X say $\{f^{-1}(G_1), \dots, f^{-1}(G_n)\}$, i.e. $X \subseteq \bigcup_{i=1}^n f^{-1}(G_i) \Rightarrow f(X) \subseteq f(\bigcup_{i=1}^n f^{-1}(G_i)) = \bigcup_{i=1}^n ff^{-1}(G_i)$. But $ff^{-1}(G_i) \subseteq G_i$, so $\bigcup_{i=1}^n ff^{-1}(G_i) \subseteq \bigcup_{i=1}^n G_i \Rightarrow f(X) \subseteq \bigcup_{i=1}^n G_i$. $\Rightarrow \{G_i : i = 1, \dots, n\}$ forms a finite subcover of $\{G_i | i \in I\}$ for f(X). Hence, f(X) is compact in T and from a previous result, we implies that f(X) is closed and bounded in T.

Complex valued functions and vector valued functions: Definition:

Let (S, d_S) be a metric space and let $f: S \to \mathbb{C}$ and $g: S \to \mathbb{C}$ be complex valued functions. The sum $+g: S \to \mathbb{C}$, the difference $f - g: S \to \mathbb{C}$, the product $f.g: S \to \mathbb{C}$ and the quotient $f/g: S \to \mathbb{C}$ are defined respectively by:

1.
$$f \pm g(x) = f(x) \pm g(x), \forall x \in S$$
.
2. $f \cdot g(x) = f(x) \cdot g(x), \forall x \in S$.
3. $f/g(x) = \frac{f(x)}{g(x)}, \forall x \in S$ such that $g(x) \neq 0$.

Exercise:

Let (S, d_S) be a metric space and let $f: S \to \mathbb{C}$ and $g: S \to \mathbb{C}$ be complex valued functions. If f and g are continuous at $p \in S$, prove that;

 $f + g, f - g, f. g: S \rightarrow \mathbb{C}$ are continuous functions at p.

Definition:

Let (S, d_S) be a metric space and let $f: S \to \mathbb{R}^n$ and $g: S \to \mathbb{R}^n$ be vector valued functions. The sum $f + g: S \to \mathbb{R}^n$, the scalar product $\alpha. f: S \to \mathbb{R}^n$, where $\alpha \in \mathbb{R}$, the inner (or dot) product $f.g: S \to \mathbb{R}^n$ and the norm $||f||: S \to \mathbb{R}$ are defined respectively by:

1. $f + g(x) = f(x) + g(x), \forall x \in S$. **2.** $\alpha. f(x) = \alpha. f(x), \forall x \in S$. **3.** $f.g(x) = f(x).g(x), \forall x \in S$.

4. $||f||(x) = ||f(x)||, \forall x \in S.$

Exercises:

1. Let (S, d_S) be a metric space and let $f: S \to \mathbb{R}^n$ and $g: S \to \mathbb{R}^n$ be vector valued functions. If f and g are continuous at $p \in S$ and $\alpha \in \mathbb{R}$, prove that;

 $f + g, \alpha. f, f. g, ||f|| : S \to \mathbb{R}^n$ are continuous functions at p.

2. Let (S, d_S)be a metric space and let f: S → ℝⁿ be a vector valued function defined by, f(x) = (f₁(x), f₂(x), ..., f_n(x)), for x ∈ S. Prove that, f is continuous at p ∈ S if, and only if, f_i: S → ℝ is continuous at p, for all i = 1,2,...,n.

Bounded functions:

Definition:

A function $f: S \to \mathbb{R}^n$ from a metric space (S, d_S) into the Euclidean space $(\mathbb{R}^n, ||.||)$, is called bounded on *S*, if there exists a positive real number M > 0, such that;

$$\|f(x)\| \le M, \,\forall x \in S.$$

Or equivalently: f is bounded if, and only if, f(S) is bounded subset of \mathbb{R}^n .

Theorem:

Let $f: S \to \mathbb{R}^n$ be a function from a metric space (S, d_S) into the Euclidean space $(\mathbb{R}^n, \|.\|)$. If f is continuous on a compact subset X of S, then f is bounded.

Proof: Since f is continuous on X and X is compact, then f(X) is compact as a metric subspace of \mathbb{R}^n . So, f(X) is compact subset of \mathbb{R}^n and as an application of a previous result f(X) is closed and bounded. Therefore, f is bounded.

Remark:

If $f: S \to \mathbb{R}$ is a real valued function which is bounded on $X \subseteq S$, then f(X) is bounded of $\mathbb{R} \Rightarrow f(X)$ is b is bounded above bounded above and bounded below $\Rightarrow f(X)$ has Sup(f(X)) and $Inf(f(X)) \Rightarrow$

 $Sup(f(X)) \leq f(x) \leq Inf(f(X)), \forall x \in X.$

Exercise:

Let $f: S \to \mathbb{R}$ be a real valued function from a metric space (S, d_S) into the Euclidean space $(\mathbb{R}, |.|)$. Prove that, if f is continuous on a compact subset of S, then there exist two points $p, q \in X$ such that;

$$f(p) = Inf(f(X))$$
 and $f(q) = Sup(f(X))$.

Theorem:

Let f be defined on an interval S of \mathbb{R} . Assume that, f is continuous at a point c in S and that $f(c) \neq 0$. Then, there is an open ball $B(c; \delta)$ such that f(x) has the same sign as f(c) in $B(c; \delta) \cap S$.

Proof:

Suppose that f(c) > 0. Let $\epsilon = \frac{1}{2}f(c) \Rightarrow \epsilon > 0$.

Since $\epsilon > 0$ and *f* is continuous at $c \in S \Rightarrow \exists \delta > 0$ such that if $x \in S$ and;

$$|x - c| < \delta \implies |f(x) - f(c)| < \epsilon.$$

Therefore, if $x \in B(c; \delta) \implies -\epsilon < f(x) - f(c) < \epsilon$
$$\Rightarrow f(c) - \epsilon < f(x) < f(c) + \epsilon;$$
$$\Rightarrow f(c) - \frac{1}{2}f(c) < f(x) < f(c) + \frac{1}{2}f(c);$$
$$\Rightarrow 0 < \frac{1}{2}f(c) < f(x) < \frac{3}{2}f(c), \text{ since } f(c) > 0;$$
$$\Rightarrow f(x) > 0.$$

Therefore, f(x) has the same sign as f(c) in $B(c; \delta) \cap S$. The proof is similar if (c) < 0, except that we take in this case $\epsilon = -\frac{1}{2}f(c)$.

Theorem (Bolzano's theorem for continuous functions):

Let f be a real-valued and continuous function on a compact interval [a, b]in \mathbb{R} , and suppose that f(a) and f(b) have opposite signs , i.e. f(a)f(b) < 0. Then, there is at least one point $c \in (a, b)$ such that f(c) = 0.

Proof:

For definiteness, assume that f(a) > 0 and f(b) < 0. Let; $A = \{x \mid x \in [a, b] \text{ and } f(x) \ge 0\}.$

Since $a \in [a, b]$ and $f(a) > 0 \Rightarrow a \in A \Rightarrow A \neq \emptyset$. Since, $A \subseteq [a, b] \Rightarrow x \leq b$, $\forall x \in A \Rightarrow b$ is an upper bound of $A \Rightarrow Sup A$ exists. Let c = Sup A.

Since $f(b) < 0 \Rightarrow b \notin A$ and from the above theorem, there is an open ball B(b;r) such that f(x) has the same sign as f(b) in $B(b;r) \cap [a,b]$. $\Rightarrow f\left(b - \frac{r}{2}\right) < 0 \Rightarrow b - \frac{r}{2} \notin A$ and it is also an upper bound of A. $\Rightarrow c = Sup A < b$, since $b - \frac{r}{2}$ is an upper bound of A with $b - \frac{r}{2} < b$. $\Rightarrow a < c$ (since $a \in A$) and c < b. $\Rightarrow a < c < b \Rightarrow c \in (a, b)$. We will show that, f(c) = 0.

If $f(c) \neq 0$, then from the above result, there is an open ball $B(c; \delta)$ such that f(x) has the same sign as f(c) in $B(c; \delta) \cap [a, b]$.

If f(c) > 0, then there are points $x \in A$ such that x > c at which f(x) > 0 and this is a contradiction since c = Sup A.

If f(c) < 0, then $c - \frac{\delta}{2}$ is an upper bound for A since $f(c - \frac{\delta}{2}) < 0$. But c = Sup A, hence $c < c - \frac{\delta}{2}$ (contradiction).

Thus, there is at least a point $c \in (a, b)$. Such that f(c) = 0.

Uniform continuity:

Remark:

Firstly, let us recall the definition of continuity:

Let $f: S \to T$ be a function from a metric space (S, d_S) into a metric space (T, d_T) and let $A \subseteq S$. Then, f is called continuous on A if, the following condition is hold:

 $\forall \ p \in A \text{ and } \forall \ \epsilon > 0 \exists a \ \delta > 0 \text{ (depending on } p \text{ and on } \epsilon) \text{ such that if } x \in A$

and
$$d_S(x,p) < \delta \Rightarrow d_T(f(x),f(p)) < \epsilon$$
.

In general, we cannot expect that for a fixed $\epsilon > 0$ the same $\delta > 0$ will serve for every point *p* in .

Definition (Uniform continuity):

Let $f: S \to T$ be a function from a metric space (S, d_S) , into a metric space (T, d_T) . Then f is said to be uniformly continuous on a subset A of S, if the following condition holds:

 $\forall \epsilon > 0 \exists a \delta > 0$ (depending on ϵ), such that if $x, y \in A$ and,

$$d_S(x,y) < \delta \Rightarrow d_T(f(x),f(y)) < \epsilon.$$

Theorem:

Let $f: S \to T$ be a function from a metric space (S, d_S) , into a metric space (T, d_T) . If f is uniformly continuous on S, then f is continuous on S. But the converse needs not to be true in general.

Proof:

Suppose *f* is uniformly continuous on *S*. Wanted: *f* is continuous on *S*. Let $\epsilon > 0$ and $p \in S$, wanted: $\exists a \ \delta > 0$ (depending on *p* and on ϵ) such that if $x \in S$ and $d_S(x,p) < \delta \Rightarrow d_T(f(x), f(p)) < \epsilon$.

Since $\epsilon > 0$ and $\exists a \ \delta > 0$ (depending on ϵ) such that if $x, y \in S$ and $d_S(x, y) < \delta \Rightarrow d_T(f(x), f(y)) < \epsilon \dots (*)$. Thus, if we take y = p, then (*) becomes, if $x \in S$ and $d_S(x, p) < \delta \Rightarrow d_T(f(x), f(p)) < \epsilon \Rightarrow f$ is continuous at $p \in S \Rightarrow f$ is continuous on S.

Example:

Let *f* be real-valued function define on \mathbb{R} by $f(x) = x^2$, $\forall x \in \mathbb{R}$. We will show that *f* is continuous on \mathbb{R} and *f* is not uniformly continuous on \mathbb{R} :

For *f* is continuous on \mathbb{R} : Let $p \in \mathbb{R}$. Wanted: *f* is continuous at *p*. Let $\epsilon > 0$.

Wanted: $\exists a \ 0 < \delta \leq 1$ such that if;

$$|x - c| < \delta \implies |f(x) - f(p)| < \epsilon.$$
As we know, $|f(x) - f(p)| = |x^2 - p^2| = |(x - p)(x + p)|$

$$= |x - p| |x + p|$$
If we suppose, $|x - p| < \delta \implies |f(x) - f(p)| < \delta |x + p|$

$$\Rightarrow |f(x) - f(p)| < \delta(|x| + |p|) \dots (* 1)$$
Since $\delta < 1 \implies |x - p| < 1$. But $||x| - |p|| \le |x - p|$

$$\Rightarrow ||x| - |p|| < 1 \implies -1 < |x| - |p| < 1$$
From $|x| - |p| < 1 \implies |x| < |p| + 1 \dots (* 2)$
From (* 1) and (* 2) we have,

$$\Rightarrow |f(x) - f(p)| < \delta(1 + |p| + |p|) = \delta(1 + 2|p|)$$

$$\Rightarrow |f(x) - f(p)| < \delta(1 + 2|p|)$$

So we can choose $\delta = Min\{\frac{\epsilon}{(1+2|p|)}, 1\}$. Therefore $|x - p| < \delta \Rightarrow |f(x) - f(p)| = |x^2 - p^2| = |(x - p)(x + p)|$ $= |(x - p)||(x + p)| < \delta|(x + p)| \le \delta(|x| + |p|) < \delta(1 + |p| + |p|)$ $= \delta(1 + 2|p|)$ $\Rightarrow |f(x) - f(p)| < \delta(1 + 2|p|) \dots (*)$ Now, if $= 1 \Rightarrow \delta < \frac{\epsilon}{(1+2|p|)}$. Therefore from $(*) \Rightarrow |f(x) - f(p)| < \frac{\epsilon}{(1+2|p|)} \cdot \left(\frac{\epsilon}{(1+2|p|)}\right) = \epsilon$. And , if $\delta = \frac{\epsilon}{(1+2|p|)}$ from $(*) \Rightarrow |f(x) - f(p)| < \epsilon$.

Therefore, *f* is continuous at
$$p \in \mathbb{R} \Rightarrow f$$
 is continuous on \mathbb{R} .

Exercises

(1): Prove that $f(x) = x^2$ is not uniformly continuous on \mathbb{R} .

(2): Prove that $f(x) = x^2$ is uniformly continuous on A = (0, 1].

<u> Proof (1):</u>

We need to prove, $f(x) = x^2$ is not uniformly continuous on \mathbb{R} , i.e. wanted: $\exists p \in A$ and $\exists \epsilon > 0, \forall \delta > 0$ if $x, y \in A$ and,

 $|x - y| < \delta$ but $|f(x) - f(p)| > \epsilon ... (*)$.

Let $\epsilon = 1$, and suppose we could find a $\delta > 0$ to satisfy the condition of

(*). Taking
$$x = \frac{1}{\delta}$$
 and $y = \frac{1}{\delta} + \frac{\delta}{2}$, then;
 $|x - p| = \left|\frac{1}{\delta} - (\frac{1}{\delta} + \frac{\delta}{2})\right| = \frac{1}{\delta} + \frac{\delta}{2} < \delta$.
But $|f(x) - f(p)| = \left|(\frac{1}{\delta})^2 - (\frac{1}{\delta} + \frac{\delta}{2})^2\right| = \left|-(\frac{1}{\delta})^2 - 1\right| = (\frac{1}{\delta})^2 + 1 > 1$.
 $\Rightarrow |f(x) - f(y)| < \epsilon$.

Thus, $f(x) = x^2$ is not uniformly continuous on \mathbb{R} . <u>*Proof (2)*</u>:

Let $\epsilon > 0$, take $\delta = \frac{\epsilon}{2}$. Therefore, if we suppose that $|x - y| < \delta$

$$\Rightarrow |f(x) - f(y)| = |x^2 - y^2| = |(x - y)||(x + y)| < \delta|(x + y)| \le 2\delta,$$

since $x, y \in A = (0, 1]$ and $x + y \le 2 \Rightarrow |f(x) - f(y)| < 2\delta = 2.\frac{\epsilon}{2} = \epsilon.$
$$\Rightarrow |f(x) - f(y)| < \epsilon.$$

Since $\delta = \frac{\epsilon}{2}$ depends on ϵ only, therefore $f(x) = x^2$ is uniformly continuous on A = (0, 1].

Example:

Let *f* be a real-valued function defined on A = (0, 1] by;

$$f(x) = \frac{1}{x}, \forall x \in A = (0,1].$$

Clearly, *f* is continuous on *A* (as an exercise: show that). We will show that, *f* is not uniformly continuous at *A*. To prove this, let $\epsilon = 10$ and suppose that we could find a $0 < \delta < 1$, to satisfy the condition of uniform continuity. Take $x = \delta$, $p = \frac{\delta}{11}$. Therefore, $|x - p| = \left|\delta - \frac{\delta}{11}\right| < \delta$. But $|f(x) - f(p)| = \left|\frac{1}{\delta} - \frac{11}{\delta}\right| = \left|-\frac{10}{\delta}\right| = \frac{10}{\delta} > 10 = \epsilon$, (since $0 < \delta < 1$). Thus *f* is not uniformly continuous on A = (0,1].

The important point to note here, the sequence $\langle \frac{1}{n} \rangle$ is a Cauchy sequence in \mathbb{R} , but the sequence $\langle f(\frac{1}{n}) \rangle = \langle n \rangle$ is not a Cauchy sequence in \mathbb{R} .

Thus, if $f: S \to T$ is a continuous function on a subset A of S and $\langle x_n \rangle$ is a Cauchy sequence in A, then $\langle f(x_n) \rangle$ need not to be a Cauchy sequence in T.

Theorem:

Let $f: S \to T$ be a function from a metric space (S, d_S) , into a metric space (T, d_T) . If f is uniformly continuous on S and $\langle x_n \rangle$ is a Cauchy sequence in S, then $\langle f(x_n) \rangle$ is a Cauchy sequence in T.

Proof:

Wanted: $\langle f(x_n) \rangle$ is a Cauchy sequence in *T*. Let $\epsilon > 0$, wanted: $N \in \mathbb{Z}^+ \ni d_T(f(x_m), f(x_n)) < \epsilon, \forall m, n \ge N$.

Since f is uniformly continuous on S and $\epsilon > 0$, hence $\exists a \delta > 0$ (depending on ϵ only) such that if x, y $\in A$ and,

$$d_S(x,y) < \delta \Rightarrow d_T(f(x),f(y)) < \epsilon \dots (*).$$

Since $\delta > 0$ and $\langle x_n \rangle$ is a Cauchy sequence in *S*, then $\exists N \in \mathbb{Z}^+ \ni$

$$d_T(x_m, x_n) < \delta, \forall m, n \ge N$$

From (*) above
$$\Rightarrow d_T(f(x_m), f(x_n)) < \epsilon, \forall m, n \ge N$$
.

 $\langle f(x_n) \rangle$ is a Cauchy sequence in *T*.

Theorem (Heine theorem):

Let $f: S \to T$ be a function from a metric space (S, d_S) , into a metric space (T, d_T) . If f is continuous on a compact subset $A \subseteq S$, then f is uniformly continuous on A.

Proof:

Let $\epsilon > 0$. Wanted: $\exists a \ \delta > 0$ (depending on ϵ) such that if $x, p \in A$ and,

$$d_S(x,p) < \delta \Rightarrow d_T(f(x),f(p)) < \epsilon.$$

Since f is continuous on A and $\epsilon > 0$, then, $\forall a \in A \exists a \delta_a > 0$ (depending on a and on ϵ) such that if $x \in A$ and;

$$d_S(x,a) < \delta_a \Rightarrow d_T(f(x), f(a)) < \frac{\epsilon}{2} \dots (*)$$

The collection $\left\{B_S\left(a;\frac{\delta_a}{2}\right) \mid a \in A\right\}$ forms an open covering of A, since;

$$A \subseteq \bigcup_{a \in A} B_S\left(a; \frac{\delta_a}{2}\right)$$

But A is compact $\Rightarrow \exists a \text{ finite subcover of } A \text{ of } \left\{ B_S\left(a; \frac{\delta_a}{2}\right) \mid a \in A \right\}, \text{ say;}$

$$\left\{B_S\left(a_1;\frac{\delta_{a_1}}{2}\right), B_S\left(a_2;\frac{\delta_{a_2}}{2}\right), \dots, B_S\left(a_n;\frac{\delta_{a_n}}{2}\right)\right\}$$

i.e. $A \subseteq \bigcup_{i=1}^{n} B_{S}\left(a_{i}; \frac{\delta_{a_{i}}}{2}\right)$. Choose $\delta = Min\{\frac{\delta_{a_{1}}}{2}, \frac{\delta_{a_{2}}}{2}, \dots, \frac{\delta_{a_{n}}}{2}\} > 0$. That is, our choice of δ in this case implies that $\delta \leq \frac{\delta_{a_{k}}}{2}$, for all $k = 1, 2, \dots, n$ and hence δ depend on ϵ only.

Now, we will show this $\delta > 0$ satisfy the uniform continuity condition of f. To do this, let x and p be any two points of A with $d_S(x,p) < \delta$, we need only to show $d_T(f(x), f(y)) < \epsilon$.

Since $x \in A \subseteq \bigcup_{i=1}^{n} B_{S}\left(a_{i}; \frac{\delta_{a_{i}}}{2}\right)$, hence $\exists k = 1, ..., n \ni x \in B_{S}\left(a_{k}; \frac{\delta_{a_{k}}}{2}\right)$, i.e. $d_{S}(x, a_{k}) < \frac{\delta_{a_{k}}}{2}$. Since $x, p, a_{k} \in A$, hence by using the triangle inequality we have;

$$d_{S}(p, a_{k}) \leq d_{S}(p, x) + d_{S}(x, a_{k}) < \delta + \frac{\delta_{a_{k}}}{2} < \frac{\delta_{a_{k}}}{2} + \frac{\delta_{a_{k}}}{2} = \delta_{a_{k}}.$$

From (*) above, since $d_S(x, a_k) < \frac{\delta_{a_k}}{2} < \delta_{a_k}$ and $d_S(p, a_k) \le \delta_{a_k}$, hence $d_T(f(x), f(a_k)) < \frac{\epsilon}{2}$ and $d_T(f(p), f(a_k)) < \frac{\epsilon}{2}$. So, the triangle inequality gives us;

$$d_T(f(p), f(x)) \le d_T(f(x), f(a_k)) + d_T(f(p), f(a_k)) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

$$\Rightarrow d_T(f(p), f(x)) < \epsilon.$$

Therefore, *f* is uniformly continuous on *A*.

Fixed-point theorem for contractions:

Definition:

Let $f: S \to S$ be a function from a metric space (S, d_S) , into itself. A point $p \in S$ is called *a fixed point* of *f* if f(p) = p. The function *f* is called a *contraction* of *S* if there is a number 0 < x < 1 (called a contraction constant), such that, $d(f(x), f(y)) \leq \alpha d(x, y)$, $\forall x, y \in S \dots (*)$

Exercise:

Let (S, d) be a metric space. If $f: S \to S$ is a contraction of , then f: is uniformly continuous in S.

Proof:

Let $\epsilon > 0$. Wanted: $\exists \delta > 0$ (depending on ϵ) \exists for any $x, y \in S$; $d(x, y) < \delta \Rightarrow d(f(x), f(y)) < \epsilon$.

Since $x, y \in S$ and $f: S \to S$ is a contraction of S, hence;

$$\exists 0 < x < 1 \ \exists d(f(x), f(y)) \le \alpha d(x, y).$$

Choose $\delta = \frac{\epsilon}{\alpha} > 0$. Therefore, if we suppose that;

$$(x,y) < \delta \Rightarrow d(f(x),f(y)) < \alpha \delta = \alpha \frac{\epsilon}{\alpha} = \epsilon.$$

 $\Rightarrow d(f(x), f(y)) < \epsilon \text{ (where } \delta \text{ depending on } \epsilon \text{ only)}$

Therefore, f is uniformly continuous.

Theorem (Fixed-point theorem):

Let (S,d) be a complete metric space. If $f: S \to S$ is a contraction of S, then f has a unique fixed point, i.e. there is a unique point p in S such that f(p) = p.

Proof:

First of all, we show that $\exists p \in S \ni f(p) = p$.

Let $x \in S$ be any point of S and consider the sequence;

$$x, f(x), f(f(x)), f(f(x))), \dots;$$

This is defining a sequence $\langle p_n \rangle$ in S inductively by:

$$p_0 = x$$
, $p_{n+1} = f(p_n)$, $n = 1, 2, ...;$
i.e. $p_0 = x$, $p_1 = f(p_0) = f(x)$, $p_2 = f(p_1) = f(f(x))$, ...

Since;

$$d(p_{n+1}, p_n) = d(f(p_n), f(p_{n-1})) \le \alpha \ d(p_n, p_{n-1}), \text{ (since } f \text{ is a contraction of } S)$$

$$= \alpha \ d(f(p_{n-1}), f(p_{n-2}))$$

$$\le \alpha^2 \ d((p_{n-1}), (p_{n-2}))$$

$$= \alpha^2 \ (f(p_{n-2}), f(p_{n-3}))$$

$$\le \alpha^3 \ d((p_{n-3}), (p_{n-3}))$$

$$\dots \le \alpha^n \ d((p_1), (p_0))$$

$$\Rightarrow \ d(p_{n+1}, p_n) \le \alpha^n \ d(p_1, p_0)$$

If we let $(p_1, p_0) = c \Rightarrow d(p_{n+1}, p_n) \le \alpha^n c$. Using the triangle inequality we find, for m > n;

$$\begin{split} &d(p_m, p_n) \leq d(p_n, p_{n+1}) + d(p_{n+1}, p_{n+2}) + \dots + d(p_{m-1}, p_m); \\ &\leq \alpha^n c + \alpha^{n+1} c + \alpha^{n+2} c + \dots + \alpha^{m-1} c; \\ &= c(\alpha^n + \alpha^{n+1} + \alpha^{n+2} + \dots + \alpha^{m-1}); \\ &= c((\alpha^{m-1} + \dots + \alpha^{n+2} + \alpha^{n+1} + \alpha^n + \alpha^{n-1} + \dots + \alpha) - (\alpha^{n-1} + \dots + \alpha)); \\ &= c(\frac{1-\alpha^m}{1-\alpha} - \frac{1-\alpha^n}{1-\alpha}), \text{ (the above geometric series a converge since } \alpha < 1); \\ &= c\left(\frac{1}{1-\alpha} - \frac{\alpha^m}{1-\alpha} - \frac{1}{1-\alpha} + \frac{\alpha^n}{1-\alpha}\right) = c\left(\frac{\alpha^n}{1-\alpha} - \frac{\alpha^m}{1-\alpha}\right) < c\left(\frac{\alpha^n}{1-\alpha}\right); \\ &\Rightarrow d(p_m, p_n) < c\frac{\alpha^n}{1-\alpha}. \\ &\Rightarrow d(p_m, p_n) \to 0 \text{ as } n \to \infty \text{ (since } \alpha^n \to 0 \text{ as } n \to \infty \text{ and hence } \frac{\alpha^n}{1-\alpha} \to 0 \text{ as } n \to \infty). \\ &\Rightarrow f(p_m, p_n) \to 0 \text{ as } n \to \infty \text{ (since } f \text{ is uniformly continuous on } S \text{ (as } f \text{ is a contraction of } S), \\ &\Rightarrow d p \in S \ni p_n \to p \text{ in } S. \text{ Since } f \text{ is uniformly continuous at } p \Rightarrow f(p_n) \to f(p), \\ &\text{i.e. } \lim_{n\to\infty} f(p_n) = f(p), \text{ but } \lim_{n\to\infty} f(p_n) = \lim_{n\to\infty} p_{n+1} = p. \text{ Therefore,} \\ f(p) = p. \end{split}$$

Finally, we need only to show that p is unique. To do this, assume p and q are two fixed-points of f, i.e. f(p) = p and f(q) = q.

Since $p, q \in S$ and f is a contraction of S,

$$\Rightarrow \exists \ 0 < \alpha < 1 \ \Rightarrow \ d(f(p), f(q)) \le \alpha \ d(p, q)$$
$$\Rightarrow \exists \ 0 < \alpha < 1 \Rightarrow \ d(p, q) \le \alpha \ d(p, q)$$

If we assume that, $d(p,q) \neq 0 \Rightarrow \alpha = 1$ (contradiction). Therefore, (p,q) = 0 $\Rightarrow p = q$.

