Upper (lower) bounds, Maximum (Minimum) elements, Least (Greatest) bounds:

Definition

Let $S \subseteq \mathbb{R}$ be a subset of real numbers. If there is a real numbers b such that $x \leq b(x \geq b)$ for all $x \in S$, then b is called an upper (a lower) bound for S and we will say that S is bounded above (below) by b.

Remark:

1. If b is an upper bound for S, then every real number greatest than b will also be an upper bound for S, i.e. if b is an upper bound for S and $c \in \mathbb{R}$ such that $b \leq c$, then c is also an upper bound for S.
2. If b is a lower bound for S and $c \in \mathbb{R}$ such that $c \leq b$ then c is also a lower bound for S.

Definition

Let $S \subseteq \mathbb{R}$ be a bounded above subset of real numbers. A real number b is called a least upper bound for S if:
i. $\quad b$ is an upper bound for S, and;
ii. if a real number c is an upper bound for S, then $b \leq c$, (i.e. there is no real number less than b can be an upper bound for S).

If b is a least upper bound for, we shall denote it by $\boldsymbol{b}=\boldsymbol{S u p} \boldsymbol{S}$.

Definition

Let $S \subseteq \mathbb{R}$ be a bounded below subset of real numbers. A real number b is called a greatest lower bound for S if :
i. $\quad b$ is a lower bound for S, and;
ii. if a real number c is a lower bound for S, then $c \leq b$, (i.e. there is no real number greater than b is a lower bound for S.

If b is a greatest lower bound for, we shall denote it by $\boldsymbol{b}=\boldsymbol{I n f} \boldsymbol{S}$.

Definition

Let $S \subseteq \mathbb{R}$. If b is an upper bound for S and $b \in S$, then b is called a maximal element of S, i.e. if $b=\operatorname{Sup} S$ and $b \in S$, then b is said to be \boldsymbol{a} maximal element of S, and we shall write in this case $\boldsymbol{b}=\boldsymbol{M a x} \boldsymbol{S}$.

Definition

Let $\subseteq \mathbb{R}$. If b is a lower bound for S and $b \in S$, then b is called \boldsymbol{a} minimal element of S, i.e. if $b=\operatorname{Inf} S$ and $b \in S$, then b is a minimal element of S, and we shall write in this case $\boldsymbol{b}=\boldsymbol{M i n} \boldsymbol{S}$.

Completeness axiom:

Every non-empty set of real numbers which is bounded above (bounded below) has a supremum (infimum), i.e. $\exists b \in \mathbb{R} \ni b=\operatorname{Sup} S,(b=\operatorname{Inf} S)$.

Examples:

1. The set $\mathbb{R}^{+}=(0, \infty)$ is unbounded above. It has no upper bounds, no maximal element and no supremum. The real numbers 0 is a lower bound of \mathbb{R}^{+}and every real numbers less than 0 is also a lower bound of $\mathbb{R}^{+} . \mathbb{R}^{+}$has no minimal element, and $\operatorname{Inf} \mathbb{R}^{+}=0$.
2. $S=[0,1]$ is bounded above by 1 (i.e. 1 is an upper bound for S) and is bounded below by 0 (i.e. 0 is lower bound for S). Sup $S=1$ and $\operatorname{Inf} S=0$. Also $\operatorname{Max} S=1$, and $\operatorname{Min} S=0$.
3. $S=\{x:(x-a)(x-b)(x-c)(x-d)<0 ; a<b<c<d\}=(a, b) \cup(c, d)$

Note that, a is a lower bound of S (hence any real number less than a is also a lower bound of S). S is bounded below by $a . d$ is an upper bound for S (hence any real number greater than a is also an upper bound of S). S is

bounded above by $d . \operatorname{Inf} S=a$, and S has no minimal element of S. Also Sup $S=d$, and S has no maximal element of S.

Remark:

Supremum and Infimum of a subset of real numbers are uniquely determined whenever they exist.

Explanation:

Suppose $\operatorname{Sup} S=b$ and $\operatorname{Sup} S=c$.
Since $\operatorname{Sup} S=b$, then b is an upper bound of S.
As b is an upper bound of S and $\operatorname{Sup} S=c$, then $c \leq b$.
Also, as $\operatorname{Sup} S=c$, then c is an upper bound of S.
As c an upper bound of S and $\operatorname{Sup} S=b$, that implies $b \leq c$.
Thus, $=b$, and hence $\operatorname{Sup} S$ is uniquely determined if it is exist.
Similarly, we can show that Inf S is uniquely determined if it is exist.

Some properties of the Supremum:

Theorem (Approximation property):

Let $S \subseteq$ be a non-empty subset of real numbers with an upper bound b. Then $\operatorname{Sup} S=b$ if, and only if, for every $a \leq b$ there is some $a \in S$ such that $a<x \leq b$.

Proof:

Since $\operatorname{Sup} S=b$, hence $x \leq b \forall x \in S$
Wanted: $\exists x \in S \ni a<x \leq b$ and from * above we need to show only:

$$
\exists x \in S \ni a<x .
$$

Suppose $x \leq a \quad \forall x \in S$, then a is an upper bound for S. But Sup $S=b$ is the least upper bound for S. Thus $b<a$ and this is a contradiction.

Therefore, $\exists x \in S \ni a<x$ and from (*) above, we deduce that $a<x \leq b$.
Conversely, suppose $\forall a<b, \exists x \in S \ni a<x \leq b$. Wanted: Sup $S=b$.

By contrary, assume that $\operatorname{Sup} S \neq b$. That is, $\exists a<b$ such that a is an upper bound of S, i.e. $x \leq a, \forall x \in S$ and this contradicts our assumption above. Thus, Sup $S=b$.

Theorem (Additive property):

Let $A, B \subseteq \mathbb{R}$, be non-empty subsets of real numbers and let $C=\{x+y \in \mathbb{R}: x \in A, y \in B\}$. If each of A and B has a supremum, then C has a supremum and $\operatorname{Sup} C=\operatorname{Sup} A+\operatorname{Sup} B$.

Proof:

Let $\operatorname{Sup} A=a, \operatorname{Sup} B=b$. If $z \in C$, then $\exists x \in A$ and $y \in B$ such that $z=x+y$. Since $\operatorname{Sup} A=a, \operatorname{Sup} B=b$, hence $x \leq a$ and $y \leq b$ and that implies $x+y \leq a+b \Rightarrow z \leq a+b$.

Therefore $a+b$ is an upper bound of C and the Supremum of C exists, say $c=\operatorname{Sup} C$. Therefore, $c \leq a+b$, i.e. $\operatorname{Sup} C \leq \operatorname{Sup} A+\operatorname{Sup} B$.
To show that $c=a+b$ (i.e. $\operatorname{Sup} C=\operatorname{Sup} A+\operatorname{Sup} B$.), we need to show that $a+b$ satisfied the approximation property for supremum.
So, assume $\epsilon>0$. Thus, $a-\frac{\epsilon}{2}<a=\operatorname{Sup} A$ and $b-\frac{\epsilon}{2}<b=\operatorname{Sup} B$.
From the approximation property for supremum, we imply that;
$\exists x \in A$ and $\exists y \in B \exists a-\frac{\epsilon}{2}<x \leq a$ and $-\frac{\epsilon}{2}<y \leq b$.
Since $a-\frac{\epsilon}{2}<x$ and $b-\frac{\epsilon}{2}<y \Rightarrow a+b-\epsilon<x+y \leq a+b$.
But $+y=z \in C \ni a+b-\epsilon<z \leq a+b$. Therefore, SupC $=a+b$.

$$
\Rightarrow \operatorname{Sup} C=\operatorname{Sup} A+\operatorname{Sup} B
$$

Theorem (Comparison property):

Let $A, B \subseteq \mathbb{R}$ be non-empty subsets of real numbers such that $x \leq y$ for every $x \in A$ and $y \in B$. If B has a Supremum, then A has Supremum and $\operatorname{up} A \leq \operatorname{Sup} B$.

Proof:

Suppose that B has a supremum, say $\operatorname{Sup} B=b$, then $y \leq b \forall y \in B$.

But $x \leq y \forall x \in A$ and $y \in B$, so $x \leq b \forall x \in A$ and that implies b is an upper bound for A. From completeness axiom $\operatorname{Sup} A$ exists, say $a=\operatorname{Sup} A$. Since b is an upper bound for A and $a=\operatorname{Sup} A$, thus $a \leq b$, i.e. $\operatorname{Sup} A \leq \operatorname{Sup} B$.

As a home work prove the following properties of the infimum:

Theorem (Approximation property):

Let $S \subseteq \mathbb{R}$ be a non-empty set of real numbers with a lower bound b. Then $b=\operatorname{Inf} S$ if, and only if, for every $a>b$ there is some $x \in S$ such that $\leq x<a$.

Theorem (Additive property):

Let $A, B \subseteq \mathbb{R}$ be non-empty subsets of real numbers and let $C=\{x+y: x \in A, y \in B\}$. If each of A and B has an infimum, then C has an infimum and $\operatorname{Inf} C=\operatorname{Inf} A+\operatorname{Inf} B$.

Theorem (Comparison property):

Let $A, B \subseteq \mathbb{R}$ be non-empty subsets of real numbers such that $x \leq y$, for every $x \in A$ and $y \in B$. If A has a infimum, then B has infimum and $\operatorname{Inf} A \leq \operatorname{Inf} B$.

Theorem (Archimedean Property of the field of real numbers \mathbb{R}):

The set of real numbers \mathbb{R} is unbounded above, i.e. if $x \in \mathbb{R}$, there exists $n \in \mathbb{N}$ such that $x<n$.

Proof:

Let $x \in \mathbb{R}$. By contrary assume there is no $n \in \mathbb{N}$ such that $x<n$, i.e. $n \leq x, \forall n \in \mathbb{N}$. Thus, x is an upper bound of \mathbb{N}. Therefore, \mathbb{N} has a supremum say $y=\operatorname{Sup} \mathbb{N}$. Since $y-1<y$, hence there exists $m \in \mathbb{N} \ni y-1<m$, as an application of the approximation property of $y=\operatorname{Sup} \mathbb{N}$. Then, $y<m+1$,
i.e. $\exists m+1 \in \mathbb{N} \ni y=\operatorname{Sup} \mathbb{N}<m+1$ and this contradicts the assumption that y is an upper bound of \mathbb{N}. Therefore, \mathbb{R} is unbounded above.

Exercises:

1. Let $x, y \in \mathbb{R}$ be positive real numbers. Then:
a. $\exists n \in \mathbb{N} \ni x<n y$.
b. $\exists n \in \mathbb{N} \ni 0<\frac{1}{n}<y$.
c. $\exists n \in \mathbb{N} \ni n-1 \leq y<n$.
2. Let $x, y \in \mathbb{R}$. Then:
a. $\exists r \in \mathbb{Q} \ni x<r<y$, (The Density theorem of the rational numbers).
b. $\exists z \in \mathbb{Q}^{c} \ni x<z<y$, (The Density theorem of the irrational numbers).

Euclidean space $\mathbb{R}^{\boldsymbol{n}}$

When $n=1$, a point in \mathbb{R} is a real number.
When $=2$, a point in two dimensional space $\mathbb{R}^{2}=\mathbb{R} \times \mathbb{R}$ is an ordered pair of real numbers $\left(x_{1}, x_{2}\right)$.
When $n=3$, a point in three-dimensional space $\mathbb{R}^{3}=\mathbb{R} \times \mathbb{R} \times \mathbb{R}$ is a triple of real numbers $\left(x_{1}, x_{2}, x_{3}\right)$.

In general, a point in n-dimensional space $\mathbb{R}^{n}=\mathbb{R} \times \mathbb{R} \times \ldots \times \mathbb{R}$ is an ordered n-tuple of real numbers $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. The real number x_{k} is called the k-th coordinate of the point $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.

Definition

Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ be two points in \mathbb{R}^{n} and $c \in \mathbb{R}$, We define:
i. Equality: $x=y \Leftrightarrow x_{1}=y_{1}, x_{2}=y_{2}, \ldots, x_{n}=y_{n}$.
ii. Sum: $x+y=\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots, x_{n}+y_{n}\right)$
iii. Multiplication by real numbers (scalars):

$$
c x=c\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(c x_{1}, c x_{2}, \ldots, c x_{n}\right)
$$

iv. Difference: $x-y=\left(x_{1}-y_{1}, x_{2}-y_{2}, \ldots, x_{n}-y_{n}\right)$
v. Origin (zero vector): $0=(0,0, \ldots, 0)$
vi. Inner product (dot product):

$$
\begin{gathered}
x \cdot y=x_{1} \cdot y_{1}+x_{2} \cdot y_{2}+\cdots+x_{n} \cdot y_{n} \\
x \cdot y=\sum_{i=1}^{n} x_{k} \cdot y_{k}
\end{gathered}
$$

vii. Norm (length): $\|x\|=\sqrt{x \cdot x}=\sqrt{x_{1}{ }^{2}+x_{2}{ }^{2}+\cdots+x_{n}{ }^{2}}$.

For $n=1$;

For $n=2$;

For $n=3$;

viii. the norm $\|x-y\|$ is called the distance between $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$;

$$
\|x-y\|=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}+\cdots+\left(x_{n}-y_{n}\right)^{2}} .
$$

Remark:

$\left(\mathbb{R}^{n},+,.\right)$ is a vector space over the filed \mathbb{R}.

Properties of the norm:

Let $=\left(x_{1}, x_{2}, \ldots, x_{n}\right), y=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$. Then
a) $\|x\| \geq 0$ and $\|x\|=0 \Leftrightarrow x=0$.
b) $\|c x\|=|c|\|x\|$ for any $c \in \mathbb{R}$, where $|c|$ denotes the absolute value of c.
c) $\|x-y\|=\|y-x\|$.
d) Cauchy - Schwartz inequality: $|x-y| \leq\|x\|\|y\|$.
e) Triangle inequality: $\|x-y\| \leq\|x\|+\|y\|$, sometimes the triangle inequality written in the form.

$$
\|x-y\| \leq\|x-z\|+\|z-y\| .
$$

f) $\|x-y\| \geq|\|x\|-\|y\||$.

Metric spaces:

Definition:

A matric space is a pair (M, d) consists of a non-empty set M and a real valued function $d: M \times M \rightarrow \mathbb{R}$ called a metric function or distance function, satisfying the following properties: for any $x, y, z \in M$.

$$
M_{1}: d(x, y) \geq 0 .
$$

$$
\begin{aligned}
& M_{2}: d(x, y)=0 \Leftrightarrow x=y . \\
& M_{3}: d(x, y)=d(y, x) . \\
& M_{4}: d(x, z) \leq d(x, y)+d(y, z) .
\end{aligned}
$$

Remark:

1. The real number $d(x, y)$ is called the distance from x to y.
2. The properties $\left(M_{1}\right)$ and $\left(M_{2}\right)$ are state that the distance from any point to another is never negative, and that the distance from a point to itself is zero .
3. The property $\left(M_{3}\right)$ states that the distance from a point x to a point y is the same as the distance from y to x.
4. The property $\left(M_{4}\right)$ is called the triangle inequality, because if x, y and z are not collinear points in the plane $\mathbb{R}^{2}=\mathbb{R} \times \mathbb{R}$ as shown in the following figure

Then M_{4} states that, the length $d(x, z)$ of one side of the triangle is less than to the sum $d(x, y)+d(y, z)$ of the lengths of the other two sides of the triangle. Moreover, if x, y and z are collinear points in the plane as shown in the following figure:

Then, $d(x, z)=d(x, y)+d(y, z)$

M331 (Mathematical Analysis(1))

Example of metric spaces:

Example 1:

let $M=\mathbb{R}^{n}, n \geq 1$ and let $d: M \times M \rightarrow \mathbb{R}$ be a function defined by;

$$
\begin{gathered}
\qquad d(x, y)=\|x-y\|, \forall x, y \in M \\
\text { where }\|x-y\|=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}+\cdots+\left(x_{n}-y_{n}\right)^{2}} \\
=\sqrt{\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}}
\end{gathered}
$$

Clearly, the function d above is a metric on M called the Euclidean metric and in fact the pair $(M, d)=\left(\mathbb{R}^{n},\|\|.\right)$ is called the Euclidean space.

Remark:

1) If $n=1 \Rightarrow d(x, y)=|x-y| \forall x, y \in \mathbb{R}$.
2) If $n=2 \Rightarrow d(x, y)=\|x-y\|$

$$
=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}}
$$

$$
\forall\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}
$$

3) If $n=3 \Rightarrow d(x, y)=\|x-y\|$

$$
=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}+\left(x_{3}-y_{3}\right)^{2}}
$$

$$
\forall\left(x_{1}, x_{2}, x_{3}\right),\left(y_{1}, y_{2}, y_{3}\right) \in \mathbb{R}^{3}
$$

Exercise: Prove the Murkowski's inequality:- For $p \geq 1$

$$
\sqrt[p]{\sum_{i=1}^{n}\left|x_{i}+y_{i}\right|^{p}} \leq \sqrt[p]{\sum_{i=1}^{n}\left|x_{i}\right|^{p}}+\sqrt[p]{\sum_{i=1}^{n}\left|y_{i}\right|^{p}}
$$

To show that, $\left(\mathbb{R}^{n},\|\|.\right)$ is a metric space, let;

$$
x=\left(x_{1}, x_{2}, \ldots, x_{n}\right), y=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathbb{R}^{n}
$$

$\left(\boldsymbol{M}_{1}\right):$ From the definition of $d(x, y)=\|x-y\|=\sqrt{\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}}$, hence the rang of the function $d: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ is equal to $[0, \infty)$. Thus, $d(x, y) \geq 0 . \forall x, y \in \mathbb{R}^{n}$.
$\left(\boldsymbol{M}_{2}\right): d(x, y)=0 \Leftrightarrow\|x-y\|=0 \Leftrightarrow \sqrt{\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}}=0 ;$

$$
\begin{aligned}
& \Leftrightarrow \sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2} \Leftrightarrow\left(x_{i}-y_{i}\right)^{2}=0 \Leftrightarrow x_{i}-y_{i}=0 \Leftrightarrow x_{i}=y_{i}, \forall i= \\
& 1, \ldots, n \Leftrightarrow x_{1}=y_{1}, x_{2}=y_{2}, \ldots, x_{n}=y_{n} \Leftrightarrow x=y \text {. } \\
& \left(\boldsymbol{M}_{3}\right): d(x, y)=\|x-y\|=\sqrt{\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}}=\sqrt{\sum_{i=1}^{n}\left(-\left(y_{i}-x_{i}\right)\right)^{2}} \\
& =\sqrt{\sum_{i=1}^{n}\left(y_{i}-x_{i}\right)^{2}}=\|y-x\|=d(y, x) . \\
& \left(\boldsymbol{M}_{\mathbf{4}}\right): d(x, z)=\|x-z\|=\sqrt{\sum_{i=1}^{n}\left(\left(x_{i}-y_{i}\right)+\left(y_{i}-z_{i}\right)\right)^{2}} \\
& \leq \sqrt{\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}}+\sqrt{\sum_{i=1}^{n}\left(y_{i}-z_{i}\right)^{2}} ; \\
& =\|x-y\|+\|y-z\|=d(x, y)+d(y, z) .
\end{aligned}
$$

Therefore $\left(\mathbb{R}^{n},\|\|.\right)$ is a metric space.

Example (2):

Let M be a non-empty set and let $d: M \times M \rightarrow \mathbb{R}$ be a function defined by

$$
d(x, y)=\left\{\begin{array}{ll}
0 & \text { if } x=y \\
1 & \text { if } x \neq y
\end{array} .\right.
$$

Then d is a metric function on M and hence (M, d) is a metric space called the

discrete metric space.

Sol. :

Let $x, y, z \in M$,
$\left(\boldsymbol{M}_{\mathbf{1}}\right):$ Since $d(x, y)=0$ if $x=y$ and $d(x, y)=1$ if $x \neq y$. Therefore,

$$
d(x, y) \geq 0, \forall x, y \in M .
$$

$\left(\boldsymbol{M}_{2}\right): d(x, y)=0 \Leftrightarrow x=y$
$\left(\boldsymbol{M}_{\mathbf{3}}\right): d(x, y)=\left\{\begin{array}{ll}0 & \text { if } x=y \\ 1 & \text { if } x \neq y\end{array}=\left\{\begin{array}{ll}0 & \text { if } y=x \\ 1 & \text { if } y \neq x\end{array}=d(y, x)\right.\right.$
$\left(\boldsymbol{M}_{4}\right):$ We have the following cases:
i. $\quad x=y, x \neq z($ i.e. $y \neq z)$

Since $1 \leq 0+1 \Rightarrow d(x, z) \leq d(x, y)+d(y, z)$.
ii. $\quad x=z, y \neq z($ i.e. $y \neq x)$

$$
\text { since } 0 \leq 1+1 \Rightarrow d(x, z) \leq d(x, y)+d(y, z) \text {. }
$$

iii. $z=y, x \neq y($ i.e. $x \neq z)$
since $1 \leq 1+0 \Rightarrow d(x, z) \leq d(x, y)+d(y, z)$.
iv. $x=y=z$

$$
\text { since } 0 \leq 0+0 \Rightarrow d(x, z) \leq d(x, y)+d(y, z) \text {. }
$$

v. $x \neq y \neq z$
since $1 \leq 1+1 \Rightarrow d(x, z) \leq d(x, y)+d(y, z)$.
Hence $(x, z) \leq d(x, y)+d(y, z), \forall x, y, z \in M$.
Therefore, (M, d) is a metric space.

Example (3):

Let (M, d) be a metric space. Define a function $e: M \times M \rightarrow \mathbb{R}$ by:

$$
e(x, y)=\operatorname{Min}\{1, d(x y)\}
$$

for any $x, y \in M$. Therefore (M, e) is a metric space.

Sol.:

Let $x, y, z \in M$.
($\boldsymbol{M}_{\mathbf{1}}$): Since, either $e(x, y)=1$, (hence $e(x, y)>0$) or $e(x, y)=d(x, y)$, (hence $e(x, y) \geq 0$). Therefore, $e(x, y) \geq 0$.
$\left(\boldsymbol{M}_{2}\right): e(x, y)=0 \Leftrightarrow \operatorname{Min}\{1, d(x, y)\}=0 \Leftrightarrow d(x, y)=0 \Leftrightarrow x=y$.
$\left(\boldsymbol{M}_{3}\right): e(x, y)=\operatorname{Min}\{1, d(x, y)\}=\operatorname{Min}\{1, d(y, x)\}=e(y, x)$.
$\left(\boldsymbol{M}_{4}\right)$: Note that, in general, $e(x, y)=\operatorname{Min}\{1, d(x, y)\} \leq 1, \forall x, y \in M$.
Wanted: $e(x, z) \leq e(x, y)+e(y, z)$. We have the following cases:
i. Suppose either, $e(x, y)=1$ or $e(y, z)=1$. To be definite, suppose $e(x, y)=1$. We have that, in general $(x, z) \leq 1 \forall x, z \in M \Rightarrow$ $e(x, z) \leq 1 \leq 1+e(y, z)=e(x, y)+e(y, z)$. Similarly, if we suppose $e(y, z)=1$, we can deduce that the triangle inequality is hold.
ii. Suppose both $e(x, y)<1$ and $e(y, z)<1 \Rightarrow e(x, y)=d(x, y)$ and $e(y, z)=d(y, z)$. Note that;

$$
e(x, z)=\operatorname{Min}\{1, d(x, z)\} \leq d(x, z) \leq d(x, y)+d(y, z)
$$

$$
\begin{gathered}
=e(x, y)+e(y, z) \\
\Rightarrow e(x, z) \leq e(x, y)+e(y, z)
\end{gathered}
$$

Therefore, (M, e) is a metric space.

Example (4):

Let (M, d) be a metric space. Define a function $e: M \times M \rightarrow \mathbb{R}$ as:

$$
e(x, y)=\frac{d(x, y)}{1+d(x, y)}, \quad \forall x, y \in M
$$

Then, (M, e) is a metric space.

Sol.:

Let $x, y, z \in M$.
$\left(\boldsymbol{M}_{\mathbf{1}}\right):$ Since $d(x, y) \geq 0$, then clearly $e(x, y) \geq 0$.
$\left(\boldsymbol{M}_{2}\right): e(x, y)=0 \Leftrightarrow \frac{d(x, y)}{1+d(x, y)}=0 \Leftrightarrow d(x, y)=0 \Leftrightarrow x=y$.
$\left(\boldsymbol{M}_{3}\right): e(x, y)=\frac{d(x, y)}{1+d(x, y)}=\frac{d(y, x)}{1+d(y, x)}=e(y, x)$, since (M, d) is a metric space.
$\left(\boldsymbol{M}_{4}\right):$ Wanted: $e(x, z) \leq e(x, y)+e(y, z)$.

$$
\begin{gathered}
\text { Note that, } \frac{d(x, y)}{1+d(x, y)+d(y, z)} \leq \frac{d(x, y)}{1+d(x, y)}=e(x, y) \text { and; } \\
\frac{d(y, z)}{1+d(x, y)+d(y, z)} \leq \frac{d(y, z)}{1+d(y, z)}=e(y, z) .
\end{gathered}
$$

Since (M, d) is a metric space, hence $d(x, z) \leq d(x, y)+d(y, z)$ and we have the following;

$$
\begin{aligned}
e(x, z) & =\frac{d(x, z)}{1+d(x, z)} \leq \frac{d(x, y)+d(y, z)}{1+d(x, y)+d(y, z)} \\
& =\frac{d(y, z)}{1+d(x, y)+d(y, z)}+\frac{d(x, y)+d(y, z)}{1+d(x, y)+d(y, z)} \leq \frac{d(x, y)}{1+d(x, y)}+\frac{d(y, z)}{1+d(y, z)} \\
& =e(x, y)+e(y, z) \Rightarrow e(x, z) \leq e(x, y)+e(y, z)
\end{aligned}
$$

Therefore, (M, e) is a metric space.

Definition (Metric subspace):

Let (M, d) be a metric space and let S be a non-empty subset of M. Then (S, d) is also a metric space with the same metric d or more precisely, with the
restriction of d on $S \times S, d=d_{S \times S}: S \times S \rightarrow \mathbb{R}$, as metric. We call (S, d) a metric subspace of (M, d).

Examples:

Example 1:

Let (M, d) be a metric space, where $M=\mathbb{R}$ and $d(x, y)=|x-y|$, $\forall x, y \in M$. Let $S=\mathbb{Q}$, the set of rational numbers. Then (S, d) is a matric subspace of (M, d), i.e. $(\mathbb{Q},|\cdot|)$ is a metric subspace of $(\mathbb{R},|\cdot|)$.

Example 2:

Let $\left(\mathbb{R}^{2}, d\right)$ be the Euclidean space, where;

$$
d(x, y)=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}}, \forall\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2} .
$$

Define another metric $d: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ on \mathbb{R}^{2} as;

$$
\dot{d}(x, y)=\sqrt{\left(x_{1}-y_{1}\right)^{2}+4\left(x_{2}-y_{2}\right)^{2}}, \forall\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2} .
$$

Note that, $\left(\mathbb{R}^{2}, \dot{d}\right)$ is not a metric subspace of $\left(\mathbb{R}^{2}, d\right)$, because the metric d is different from d.

Point-Set topology in metric spaces

Definition (Open ball):

Let (M, d) be a metric space and let $a \in M$. An open ball $B(a ; r)$ with center a and radius r is defined by:

$$
B_{M}(a ; r)=\{x \in M \mid d(x, a)<r\} .
$$

Remark:

If (S, d) is a metric subspace of a metric space (M, d) and $a \in S$, then the open ball $B_{s}(a ; r)$ of S is given by:

$$
B_{S}(a ; r)=S \cap B_{M}(a ; r) .
$$

Example 1: Consider the Euclidean metric space $\left(\mathbb{R}^{n}, d\right), n \geq 1$, where;

$d(x, y)=\|x-y\|=\sqrt{\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}}, \forall\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$
Let $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{R}^{n}$ and $r>0$, therefore,

$$
\begin{aligned}
B(a ; r)=\{x & \left.\in \mathbb{R}^{n}: d(x, y)<r\right\}=\left\{x \in \mathbb{R}^{n}:\|x-a\|<r\right\} \\
& =\left\{x \in \mathbb{R}^{n}: \sqrt{\left.\sum_{i=1}^{n}\left(x_{i}-a_{i}\right)^{2}<r\right\}}\right. \\
& =\left\{x \in \mathbb{R}^{n}:\left(x_{1}-a_{1}\right)^{2}+\left(x_{2}-a_{2}\right)^{2}+\cdots+\left(x_{n}-a_{n}\right)^{2}<r^{2}\right\}
\end{aligned}
$$

Observe that;
i. When $n=1,(\mathbb{R}, d)$ is the Euclidean metric space, where;

$$
d(x, y)=|x-y|, \forall x, y \in \mathbb{R}
$$

In this case;

$$
\begin{aligned}
& B_{M}(a ; r)=\left\{x \in \mathbb{R}: \sqrt{(x-a)^{2}}<r\right\} . \\
= & \{x \in \mathbb{R}:|x-a|<r\}=\{x \in \mathbb{R}:-r<x-a<r\} \\
= & \{x \in \mathbb{R}: a-r<x<a+r\}=(a-r, a+r) .
\end{aligned}
$$

Hence, in the Euclidean metric space $(\mathbb{R},|\cdot|)$, the open balls are open intervals.

ii. When $n=2,\left(\mathbb{R}^{2}, d\right)$ is the Euclidean metric space, where;

$$
d(x, y)=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}}, \forall\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2} .
$$

In this case,

$$
B_{M}(a ; r)=\left\{x \in \mathbb{R}^{2}:\left(x_{1}-a_{1}\right)^{2}+\left(x_{2}-a_{2}\right)^{2}<r^{2}\right\}=\text { Open circular disk. }
$$

iii. When $n=3,\left(\mathbb{R}^{3}, d\right)$ is the Euclidean metric space, where;

$$
\begin{array}{r}
d(x, y)=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}+\left(x_{3}-y_{3}\right)^{2}} \\
\forall\left(x_{1}, x_{2}, x_{3}\right),\left(y_{1}, y_{2}, y\right) \in \mathbb{R}^{3}
\end{array}
$$

In this case ,

$$
\begin{aligned}
B_{M}(a ; r) & =\left\{x \in \mathbb{R}^{2}:\left(x_{1}-a_{1}\right)^{2}+\left(x_{2}-a_{2}\right)^{2}+\left(x_{3}-a_{3}\right)^{2}<r^{2}\right\} \\
& =\text { Open solid sphere. }
\end{aligned}
$$

Example 2:

Let $M=\mathbb{R}^{2}$ with the following three metrics spaces on M that given by:
i. $d(x, y)=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}}, \forall\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}$.
ii. $d_{1}(x ; y)=\operatorname{Max}\left\{\left|x_{1}-y_{1}\right|,\left|x_{2}-y_{2}\right|\right\}, \forall\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}$.
iii. $\quad d_{2}(x ; y)=\left|x_{1}-y_{1}\right|+\left|x_{2}-y_{2}\right|, \forall\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}$.

If $a \in \mathbb{R}^{2}$ and $r>0$, we can draw the shape of the open ball $B(a ; r)$ in \mathbb{R}^{2} with respect to each of the above metrics as shown in the following figures:

Definition (interior point):

Let (M, d) be a metric space and let $\emptyset \neq S \subseteq M$. A point $a \in S$ is called interior point of S if, and only if, $\exists r>0$ such that $B_{M}(a ; r) \subseteq S$.

Definition (open set):

Let (M, d) be a metric space. A non-empty subset S of M is said to be open in M if, and only if, all points of S are interior points of .

Definition (interior of set):

The set of all interior points of S is called the interior of S and denoted by either S° or $n t(S)$.
Remark: In general, $S^{\circ} \subseteq S$.
Example 1: Find the interior of the following sets:

1. In the Euclidean space $(\mathbb{R},|\cdot|)$:
$A=[-3,5], B=(1,4\}, C=(5,8) D=\{5\} \quad E=\mathbb{Z}$.
$A^{\circ}=(-3,5)$. Note that, for every $r>0$, we have $B(-3 ; r)=(-3-r,-3+r) \nsubseteq A$. This shows that -3 is not an interior point of A. i.e. $-3 \notin A^{\circ}$. Similarly, $5 \notin A^{\circ}$. Deduce that, $B^{\circ}=(1,4)$, $C^{\circ}=(5,8), D^{\circ}=\varnothing$ and $E^{\circ}=\varnothing$.
2. In the Euclidean space $\left(\mathbb{R}^{2},\|\cdot\|\right)$.

$$
\begin{gathered}
A=\{(x, y): x=y\}, B=\{(x, y): x \geq 0, y \geq 0\} \\
C=\left\{(x, y): x^{2}+y^{2}=1\right\}, D=\left\{(x, y): x^{2}+y^{2} \geq 1\right\} \\
E=\left\{(x, y): x^{2}+y^{2}<1\right\} \\
A^{\circ}=\emptyset, B^{\circ}=\{(x, y): x \geq 0, y \geq 0\}, C^{\circ}=\emptyset \\
D^{\circ}=\left\{(x, y): x^{2}+y^{2} \geq 1\right\}, F^{\circ}=F .
\end{gathered}
$$

Exercises:

1) In a metric space (M, d), show that both \varnothing and M are open sets in M.
2) In a metric space (M, d), show that every open ball $B_{M}(a ; r)$ is an open set in M.
3) In a discrete metric space (M, d), show that every subset S of M is open set in M.
4) In a metric space $S=[0,1]$ of the Euclidean space $(\mathbb{R},| |)$, show that every interval of the form $[0, x)$ or $(x, 1]$, where $0<x<1$, is an open set in S. Are these sets open in \mathbb{R} ? explain that.

Proof 2:

Wanted: $B_{M}(a ; r)$ open set in M.
Let $b \in B_{M}(a ; r)$, we need to show b is an interior point of $B_{M}(a ; r)$, i.e. wanted: $\exists \delta>0$ such that $B_{M}(b ; \delta) \subseteq B_{M}(a ; r)$.
Since $b \in B_{M}(a ; r)$, hence $d(b, a)<r$.
Let $=\operatorname{Min}\{d(b, a), r-d(b, a)\}$. Thus $\delta>0$ and we will show that $B_{M}(b ; \delta) \subseteq B_{M}(a ; r)$. Let $x \in B_{M}(b ; \delta)$, wanted: $x \in B_{M}(a ; r)$, i.e. we need to show $d(x, a)<r$.
Since $x \in B_{M}(b ; \delta)$, hence $d(x, b)<\delta$ and by using the triangle inequality we have; $d(x, a) \leq d(x, b)+d(b, a) \Rightarrow d(x, a)<\delta+d(b, a) \ldots(*)$.

1. If $\delta=d(b, a) \Rightarrow \delta<r-d(b, a)$, then by recalling (*) we have;

$$
\begin{gathered}
d(x, a)<\delta+d(b, a)<r-d(b, a)+d(b, a)=r \\
\Rightarrow d(x, a)<r
\end{gathered}
$$

2. If $\delta=r-d(b, a)$, then $(*)$ implies that;

$$
\begin{gathered}
d(x, a)<\delta+d(b, a)<r-d(b, a)+d(b, a)=r \\
\Rightarrow d(x, a)<r
\end{gathered}
$$

Therefore, $B_{M}(b ; \delta) \subseteq B_{M}(a ; r)$ and $B_{M}(a ; r)$ is an open set in.

Proof 3:

Wanted : S open in M. Let $x \in S$, we need to show that: $\exists r>0$ such that $B_{M}(b ; r) \subseteq S$.
Choose $r=\frac{1}{2}>0$, therefore;

$$
\begin{aligned}
B_{M}\left(x ; \frac{1}{2}\right) & =\left\{y \in M: d(y, x)<\frac{1}{2}\right\} \\
& =\{y \in M: d(y, x)<0\} \\
= & \{y \in M: y=x\}=\{x\} . \\
& \Rightarrow B_{M}\left(x ; \frac{1}{2}\right)=\{x\} .
\end{aligned}
$$

Since $x \in S \Rightarrow\{x\} \subseteq S \Rightarrow B_{M}\left(x ; \frac{1}{2}\right) \subseteq S$.

Hence S is an open set in M.
The important point to note here,
i. In the discrete metric space every singleton is an open ball and from exercise (2) above, we have every singleton is an open set.
ii. There are many metric spaces satisfied the property; "every singleton is an open set". As a home work prove that: If $M=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is a finite set and $d: M \times M \rightarrow \mathbb{R}$ be any metric function can be defined on M, then the metric space (M, d) satisfied the property "every singleton is an open set".

Proof 4:

We know that, if $B_{M}(a ; r)$ is an open ball in a metric space (M, d), then $B_{S}(a ; r)=S \cap B_{M}(a ; r)$ is an open ball in the metric subspace (S, d). Note that, $B_{\mathbb{R}}(0 ; x)=(-x, x)$ is an open ball in $\mathbb{R}, \forall 0<x<1$.

$$
\begin{aligned}
\Rightarrow B_{S}(0 ; x) & =S \cap B_{\mathbb{R}}(0 ; x)=[0,1] \cap(-x, x)(\forall 0<x<1) \\
& =[0, x)(\forall 0<x<1) .
\end{aligned}
$$

$\Rightarrow B_{S}(0 ; x)=[0, x)$ is an open ball in the metric subspace S, and since each open ball is an open set, therefore $[0, x)$ is open set in the metric subspace S for all $0<x<1$.

Similarly, $B_{\mathbb{R}}(1 ; x)=(1-x, 1+x)$ is an open ball in $\mathbb{R}(\forall 0<x<1)$.

$$
\begin{aligned}
\Rightarrow B_{S}(1 ; x) & =[0,1] \cap B_{\mathbb{R}}(1 ; x)=[0,1] \cap(1-x, 1+x)(\forall 0<x<1) \\
& =(1-x, 1]
\end{aligned}
$$

Note that, as $0<x<1 \Rightarrow-1<-x<0 \Rightarrow 0<1-x<1$

$$
\Rightarrow B_{S}(1 ; x)=(\dot{x}, 1], \quad \forall 0<\dot{x}<1
$$

$\Rightarrow(\dot{x}, 1],(\forall 0<\dot{x}<1)$ is an open set in the metric subspace S.

Remark:

Form the above we deduce that, if (S, d) is a metric subspace of a metric space (M, d), then the open sets in (S, d) need not be open sets in (M, d). For example recall exercise (4) above, we know that $\left[0, \frac{1}{2}\right.$) is open set in the metric
subspace $=[0,1]$, while $\left[0, \frac{1}{2}\right)$ is not open set in \mathbb{R}, since the point $0 \in\left[0, \frac{1}{2}\right)$ is not an interior point of $\left[0, \frac{1}{2}\right)$ w.r.t. the Euclidean space $(\mathbb{R},| |)$.

Exercise:

Let (M, d) be a metric space and $x \in M$. If $r_{2}>r_{1}>0$, prove that;

$$
B\left(x ; r_{1}\right) \subseteq B\left(x ; r_{2}\right)
$$

Theorem:

Let (M, d) be a metric space. Then:

1. The intersection of a finite collection of open sets in M is an open set in M.
2. The union of any collection of open sets in M is an open set in M.

Proof:

For 1: Suppose G_{1}, \ldots, G_{n} be open sets in M. Wanted: $\bigcap_{i=1}^{n} G_{i}$ is an open set in M, i.e. wanted: $\forall x \in \bigcap_{i=1}^{n} G_{i} \exists r>0 \ni B(x ; r) \subseteq \bigcap_{i=1}^{n} G_{i}$.

Let $x \in \bigcap_{i=1}^{n} G_{i}$. Then, $x \in G_{i} \forall i=1, \ldots, n$. But, G_{i} is an open set in M, thus, $\exists r_{i}>0 \ni B\left(x ; r_{i}\right) \subseteq G_{i} \forall i=1, \ldots, n$. Put, $r=\operatorname{Min}\left\{r_{1}, \ldots, r_{n}\right\}>0$. Since $\quad r<r_{i}, \quad$ hence, $\quad B(x ; r) \subseteq B\left(x ; r_{i}\right) \subseteq G_{i} \forall i=1, \ldots, n$. Thus, $B(x ; r) \subseteq \bigcap_{i=1}^{n} G_{i}$. So, x is an interior point in $\bigcap_{i=1}^{n} G_{i}$. Therefore, $\bigcap_{i=1}^{n} G_{i}$ is an open set.

For 2: Assume, G_{α} be an open set in M for all $\alpha \in I$. Wanted: $\mathrm{U}_{\alpha \in I} G_{\alpha}$ is an open set, i.e. wanted: $\forall x \in \bigcup_{\alpha \in I} G_{\alpha} \exists r>0 \ni B(x ; r) \subseteq \bigcup_{\alpha \in I} G_{\alpha}$.
Let $x \in \mathrm{U}_{\alpha \in I} G_{\alpha}$. Then, $x \in G_{\beta}$ for some $\beta \in I$. But, G_{β} is an open set in M, therefore, $\exists r>0 \ni B(x ; r) \subseteq G_{\beta} \subseteq \mathrm{U}_{\alpha \in I} G_{\alpha}$. Thus, $B(x ; r) \subseteq \mathrm{U}_{\alpha \in I} G_{\alpha}$. So, x is an interior point in $\mathrm{U}_{\alpha \in I} G_{\alpha}$. Therefore, $\mathrm{U}_{\alpha \in I} G_{\alpha}$ is an open set.

Remark:

In general, the intersection of any collection of open sets in a metric space (M, d) need not to be open set in M. As a counter example, the collection

$\left\{\left.\left(\frac{-1}{n}, \frac{1}{n}\right) \right\rvert\, n \in \mathbb{Z}^{+}\right\}$is an infinite collection of open sets (open intervals) in the Euclidean space \mathbb{R}, but $\bigcap_{n \in \mathbb{Z}^{+}}\left(\frac{-1}{n}, \frac{1}{n}\right)=\{0\}$ is not open in \mathbb{R}.

Theorem:

Let (S, d) be a metric subspace of a metric space (M, d) and let $X \subseteq S$. Then X is open in S if, and only if, $X=S \cap A$ for some set A which is open in M.

Proof:

Suppose X is an open set in S. Wanted: \exists an open set A in $\ni X=S \cap A$.
Since X is an open set in S, hence, $\forall x \in S, \exists r_{x}>0 \ni B_{S}\left(x ; r_{x}\right) \subseteq X$. It is clear that, $X=\cup_{x \in X} B_{S}\left(x ; r_{x}\right)$. But $B_{S}\left(x ; r_{x}\right)=S \cap B_{M}\left(x ; r_{x}\right)$. So, if we let $A=\mathrm{U}_{x \in X} B_{M}\left(x ; r_{x}\right)$, then A is a union of open sets in M , so it is an open set in M. To complete the proof, we need only to show that $X=S \cap A$.

$$
\begin{aligned}
X= & \cup_{x \in X} B_{M}\left(x ; r_{x}\right) \\
= & \cup_{x \in X}\left(S \cap B_{M}\left(x ; r_{x}\right)\right. \\
= & S \cap\left(\cup_{x \in X} B_{M}\left(x ; r_{x}\right)\right) \\
& =S \cap A
\end{aligned}
$$

Conversely, suppose \exists an open set A in M such that $X=S \cap A$. Wanted: X is open in S. Let $x \in X$, wanted: x is an interior point of X in S, i.e. $\exists r>0 \ni$ $B_{S}\left(x ; r_{x}\right) \subseteq X$.
Since $x \in X=S \cap A \Rightarrow x \in A$. But A is an open set in M, then $\exists r>0 \ni$ $B_{M}\left(x ; r_{x}\right) \subseteq A \Longrightarrow S \cap B_{M}\left(x ; r_{x}\right) \subseteq S \cap A=X$.

But $B_{S}\left(x ; r_{x}\right)=S \cap B_{M}\left(x ; r_{x}\right)$ is an open ball in S, hence

$$
\begin{aligned}
& B_{s}\left(x ; r_{x}\right) \subseteq S \cap A=X \\
& \quad \Rightarrow B_{s}\left(x ; r_{x}\right) \subseteq X
\end{aligned}
$$

Hence, x is an interior point of X in S and X is open in S.

Definition (closed set):

Let (M, d) be a metric space. A subset $S \subseteq M$ is called closed set in M if, and only if, $S^{c}=M-S$ is open set in .

Examples:

In the Euclidean metric space $\left(\mathbb{R}^{2},\|\cdot\|\right)$, the sets,

$$
\begin{gathered}
A=\{(x, y): x=y\}, B=\left\{(x, y): x^{2}+y^{2} \leq 1\right\} ; \\
C=\left\{(x, y): x^{2}+y^{2} \geq 1\right\} \text { and; } \\
D=\left\{(x, y): x^{2}+y^{2}=1\right\} ;
\end{gathered}
$$

are closed set in \mathbb{R}^{2}, while the set $E=\left\{(x, y): x^{2}+y^{2}<1\right\}$ is not closed set in \mathbb{R}^{2}.

Exercises:

Let (M, d) be a metric space. Prove the following statements:

1. The union of a finite collection of closed sets in M is closed set in M.
2. The intersection of any collection of closed sets in M is closed set in M.
3. If A is open set in M and B is closed set in M, show that $A-B$ is open set in M and $B-A$ is closed set in M.

Proof(1):

Let $\mathcal{M}=\left\{G_{i} \mid i=1,2, \ldots, n\right\}$ be a finite collection of closed sets in M. Wanted: $\cup_{i=1}^{n} G_{i}$ is closed set in M, i.e. wanted: $M-\left(\cup_{i=1}^{n} G_{i}\right)$ is open set in M.

Note that, $M-\left(\cup_{i=1}^{n} G_{i}\right)=\cap_{i=1}^{n}\left(M-G_{i}\right)$.
Since G_{i} is closed set in $M \Rightarrow M-\left(G_{i}\right)$ is open set in $\forall i=1,2, \ldots, n$.

$$
\begin{aligned}
& \Rightarrow \cap_{i=1}^{n}\left(M-\left(G_{i}\right)\right) \text { is open set in } M \forall i=1,2, \ldots, n . \\
& \Rightarrow M-\left(\cup_{i=1}^{n} G_{i}\right) \text { is open set in } M \forall i=1,2, \ldots, n . \\
& \Rightarrow \cup_{i=1}^{n} G_{i} \text { is closed set in } M .
\end{aligned}
$$

Proof(3):

i. Firstly wanted: $A-B$ is open set in M.

Note that, $\quad A-B=A \cap B^{c}=A \cap(M-B)$. Since B is closed set in M, then $M-B$ is open in M. But, A is also open in M, then $A \cap(M-B)$ is open set in M and hence $A-B$ is open set in M.
ii. Secondly wanted: $B-A$ is closed set in M, i.e. $M-(B-A)$ is open in M. Note that,

$$
\begin{gathered}
M-(B-A)=M \cap\left(B \cap A^{c}\right)^{c}=M \cap\left(B^{c} \cup A\right) \\
=\left(M \cap B^{c}\right) \cup A=(M-B) \cup A .
\end{gathered}
$$

Since B is closed in M, then $M-B$ is open in M. But A is open in M, thus $(M-B) \cup A$ is open in M. Hence $M-(B-A)$ is open in M. Therefore ($B-A$) is closed set in M.

Theorem:

Let (S, d) be a metric subspace of a metric space (M, d) and let $Y \subseteq S$. Then Y is closed in S if, and only if, $Y=S \cap B$ for some closed set B in M.

Proof:

Suppose that Y is closed in S. Wanted: \exists a closed set B in $\ni Y=S \cap B$.
Since Y is closed in S, hence $S-Y$ is open in S. Thus, \exists an open set A in M such that $S-Y=S \cap A$ (according to a previous result).

$$
\begin{aligned}
\Rightarrow Y & =S-(S \cap A)=S \cap(S \cap A)^{c} \\
& =S \cap\left(S^{c} \cup A^{c}\right)=\left(S \cap S^{c}\right) \cup\left(S \cap A^{c}\right) \\
& =\emptyset \cup\left(S \cap A^{c}\right)=S \cap A^{c}=S \cap(M-A) \\
\Rightarrow Y & =S \cap(M-A) .
\end{aligned}
$$

Since A is open in M, hence $M-A$ is closed in M. So, if we put $M-A=B$, then B is closed set in M such that $Y=S \cap B$ and our claim is hold.

Conversely, suppose \exists a closed set B in $M \ni Y=S \cap B$. Wanted: Y is closed in S, i.e. $S-Y$ is open in S.

Note that,

$$
\begin{aligned}
S-Y & =S-(S \cap B)=S \cap(S \cap B)^{c} \\
& =S \cap\left(S^{c} \cup B^{c}\right)=S \cap B^{c}=S \cap(M-B)
\end{aligned}
$$

Since B is closed in M, then $A=M-B$ is open in M. Therefore, $S-Y=S \cap A$ is an open set in S, (according to a previous result) $\Rightarrow Y$ is closed in S.

Theorem (Axioms of an interior):

Let (M, d) be a metric space and $S, T \subseteq M$. Then:

1. $\emptyset^{\circ}=\emptyset$ and $M^{\circ}=M$.
2. If $S \subseteq T$, then $S^{\circ} \subseteq T^{\circ}$.
3. S° is the largest open set in M that contained in S.
4. S is open if, and only if, $S=S^{\circ}$.
5. $S^{\circ \circ}=S^{\circ}$.
6. $(S \cap T)^{\circ}=S^{\circ} \cap T^{\circ}$.
7. In general, $S^{\circ} \cup T^{\circ} \subseteq(S \cup T)^{\circ}$, but $(S \cup T)^{\circ} \neq S^{\circ} \cup T^{\circ}$.

Proof 3:

Let $\Omega=\{G \subseteq M \mid G$ is open in M and $G \subseteq S\}$ be the collection of all open sets in M that contained in S.

Firstly, we shall prove that $S^{\circ}=\bigcup_{G \in \Omega} G$.
For $\boldsymbol{S}^{\circ} \subseteq \cup_{\boldsymbol{G} \in \Omega} \boldsymbol{G}:$ Let $x \in S^{\circ}$, then $\exists r>0 \ni B(x ; r) \subseteq S$.
Wanted: $x \in \cup_{G \in \Omega} G$.
According to a previous result, $B(x ; r)$ is an open set with $B(x ; r) \subseteq S$. Thus, $B(x ; r) \in \Omega, \quad$ so $\quad \exists G^{\prime} \in \Omega \ni B(x ; r)=G^{\prime}$. But $G^{\prime} \subseteq \cup_{G \in \Omega} G$, then $B(x ; r) \subseteq \bigcup_{G \in \Omega} G \Rightarrow x \in \bigcup_{G \in \Omega} G \Rightarrow S^{\circ} \subseteq \bigcup_{G \in \Omega} G$.
For $\cup_{\boldsymbol{G} \in \Omega} \boldsymbol{G} \subseteq \boldsymbol{S}^{\circ}$: Let $x \in \cup_{G \in \Omega} G$. Wanted: $x \in S^{\circ}$.
Since $x \in \bigcup_{G \in \Omega} G$, hence $\exists G^{\prime} \in \Omega \ni x \in G^{\prime}$. That is, G^{\prime} is an open set in M and $G \subseteq S$. Therefore, x is an interior point of G^{\prime} and there exists $r>0$ such that $B(x ; r) \subseteq G^{\prime} \subseteq S \Longrightarrow B(x ; r) \subseteq S$. Thus, $x \in S^{\circ}$ and $\cup_{G \in \Omega} G \subseteq S^{\circ}$.

Now, since $S^{\circ}=\bigcup_{G \in \Omega} G$ is a union of open sets in M, hence S° is open in M and it contained in S, since $S^{\circ} \subseteq S$. Thus, $S^{\circ} \in \Omega$. In fact, if G is open and $G \subseteq$
S, then $G \subseteq \mathrm{U}_{G \in \Omega} G=S^{\circ}$. Therefore, S° is the largest open set that contained in S.

Proof 6:

Wanted: $(S \cap T)^{\circ}=S^{\circ} \cap T^{\circ}$.
i. For $(S \cap T)^{\circ} \subseteq S^{\circ} \cap T^{\circ}$: Since $S \cap T \subseteq S$ and $S \cap T \subseteq T$, hence $(S \cap T)^{\circ} \subseteq S^{\circ}$ and $(S \cap T)^{\circ} \subseteq T^{\circ}$ as an application of axiom 2 above. Therefore, $(S \cap T)^{\circ} \subseteq S^{\circ} \cap T^{\circ}$.
ii. For $S^{\circ} \cap T^{\circ} \subseteq(S \cap T)^{\circ}:$ Let $x \in S^{\circ} \cap T^{\circ}$. Wanted: $x \in(S \cap T)^{\circ}$, i.e. wanted: $\exists r>0 \ni B(x ; r) \subseteq S \cap T$.

Since $x \in S^{\circ} \cap T^{\circ} \Rightarrow x \in S^{\circ}$ and $x \in T^{\circ}$;

$$
\Rightarrow \exists r_{1}>0 \ni B\left(x ; r_{1}\right) \subseteq S \text { and } \exists r_{2}>0 \ni B\left(x ; r_{2}\right) \subseteq T ;
$$

Put $r=\operatorname{Min}\left\{r_{1}, r_{2}\right\}$. According to a previous result, $B(x ; r) \subseteq B\left(x ; r_{i}\right)$ for $i=1,2 \quad \Rightarrow B(x ; r) \subseteq S \quad$ and $\quad B(x ; r) \subseteq T \quad \Rightarrow B(x ; r) \subseteq S \cap T \Rightarrow$ $x \in(S \cap T)^{\circ}$.
From i and ii, $(S \cap T)^{\circ}=S^{\circ} \cap T^{\circ}$.
Exercise: Prove the axioms 1,2,4,5 and 7 above.

Definition (Adherent points):

Let (M, d) be a metric space and let $S \subseteq M$. A point $x \in M$ is called an adherent point of S if, and only if, for every $r>0$ the open ball $B_{M}(x ; r)$ satisfied, $B_{M}(x ; r) \cap S \neq \emptyset$.

Definition (closure of a set):

The set of all adherent points of a set S is called the closure of a set S which is denoted by \bar{S}.

Remark: In general, $S \subseteq \bar{S}$. In fact, if $x \in S$, then $x \in B_{M}(x ; r) \cap S, \forall r>0$.

Example 1:

In the Euclidean metric space $(\mathbb{R},|\cdot|)$, let;

$$
A=(-3,4), B=[0,1], C=[3,7], D=\mathbb{Z}, E=\mathbb{Q} .
$$

Then, $\bar{A}=[-3,4], \bar{B}=[0,1], \bar{C}=[3,7], \bar{D}=\mathbb{Z}, \bar{E}=\mathbb{R}$.

Example 2:

In the Euclidean metric space $\left(\mathbb{R}^{2},\|\cdot\|\right)$, let;

$$
\begin{gathered}
A=\left\{(x, y): x^{2}+y^{2}<1\right\}, B=\left\{(x, y): x^{2}+y^{2}>1\right\}, \\
C=\left\{(x, y): x^{2}+y^{2}=1\right\}, D=\{(x, y): x \geq 0, y \geq 0\} . \\
\Rightarrow \bar{A}=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}, \bar{B}=\left\{(x, y): x^{2}+y^{2} \geq 1\right\}, \\
\bar{C}=\left\{(x, y): x^{2}+y^{2}=1\right\}, \bar{D}=\{(x, y): x \geq 0, y \geq 0\} .
\end{gathered}
$$

Theorem (Axioms of a Closure):

Let (M, d) be a metric space and let $S, T \subseteq M$. Then

1. $\bar{\emptyset}=\varnothing$ and $\bar{M}=M$.
2. If $S \subseteq T$, then $\bar{S} \subseteq \bar{T}$.
3. \bar{S} is the smallest closed set in M such that $S \subseteq \bar{S}$.
4. S is closed in $M \Leftrightarrow \bar{S}=S$.
5. $\overline{\bar{S}}=\bar{S}$.
6. $\overline{S \cup T}=\bar{S} \cup \bar{T}$.
7. In general, $(\overline{S \cap T}) \subseteq \bar{S} \cap \bar{T}$. But, $(\overline{S \cap T}) \neq \bar{S} \cap \bar{T}$.
8. $S^{\circ}={\overline{S^{c}}}^{c}$

Proof 3:

Let $\Omega=\{F \subseteq M \mid F$ is closed in M and $S \subseteq F\}$ be the collection of all closed sets in M that contain S.

Firstly, we shall prove that $\bar{S}=\bigcap_{F \in \Omega} F$.
For $\overline{\boldsymbol{S}} \subseteq \bigcap_{\boldsymbol{F} \in \Omega} \boldsymbol{F}$: Let $x \in \bar{S}$, then $\forall r>0 \ni B(x ; r) \cap S \neq \emptyset$.
Wanted: $x \in \bigcap_{F \in \Omega} F$.
By contrary, assume that $x \notin \bigcap_{F \in \Omega} F$. So, $\exists F^{\prime} \in \Omega \ni x \notin F^{\prime} \Rightarrow x \in F^{\prime c}$. But $F^{\prime c}$ is open set, since F^{\prime} is closed, that is x is an interior point of $F^{\prime c}$, so $\exists r>0 \ni B(x ; r) \subseteq F^{\prime c} \Rightarrow B(x ; r) \cap F^{\prime}=\emptyset$. But $F^{\prime} \in \Omega$, i.e. it satisfied $S \subseteq F^{\prime} \Rightarrow B(x ; r) \cap S \subseteq B(x ; r) \cap F^{\prime}=\emptyset$.
Thus, $\exists r>0 \ni B(x ; r) \cap S=\varnothing \Rightarrow x \notin \bar{S}$ and that contradicts our assumption that $x \in \bar{S}$. Therefore, $x \in \bigcap_{F \in \Omega} F$.
For $\cap_{F \in \Omega} \boldsymbol{F} \subseteq \overline{\boldsymbol{S}}$: Let $x \in \bigcap_{F \in \Omega} F$. Wanted: $x \in \bar{S}:$
By contrary, suppose $x \notin \bar{S}$. That is, $\exists r>0 \ni B(x ; r) \cap S=\emptyset$. Thus, $S \subseteq(B(x ; r))^{c}$. But $(B(x ; r))^{c}$ is a closed set in M and it contains S, so $(B(x ; r))^{c} \in \Omega$. That is, $\exists F^{\prime} \in \Omega \ni F^{\prime}=(B(x ; r))^{c} \Rightarrow \bigcap_{F \in \Omega} F \subseteq F^{\prime}$. But, $x \notin(B(x ; r))^{c} \supseteq \bigcap_{F \in \Omega} F \Rightarrow x \notin \bigcap_{F \in \Omega} F$ and that contradict our assumption that $x \in \bigcap_{F \in \Omega} F$. Therefore, $x \in \bar{S}$ and $\bigcap_{F \in \Omega} F \subseteq \bar{S}$.
Now, since $\bar{S}=\bigcap_{F \in \Omega} F$ is an intersection of closed sets in M, hence \bar{S} is closed and it contains S, since $S \subseteq \bar{S}$. Thus, $\bar{S} \in \Omega$. In fact, if F is closed and $S \subseteq F$, then $\bar{S}=\bigcap_{F \in \Omega} F \subseteq F$. Therefore, \bar{S} is the smallest closed set that contain S.

Proof 6:

Wanted: $\overline{S \cup T}=\bar{S} \cup \bar{T}$.
i. For $\bar{S} \cup \bar{T} \subseteq \overline{S \cup T}$: Since $S \subseteq S \cup T$ and $T \subseteq S \cup T$, hence $\bar{S} \subseteq \overline{S \cup T}$ and $\bar{T} \subseteq \overline{S \cup T}$, as an application of axiom 2 above. Therefore, $\bar{S} \cup \bar{T} \subseteq \overline{S \cup T}$.
ii. For $\overline{S \cup T} \subseteq \bar{S} \cup \bar{T}$: Let $x \in \overline{S \cup T}$. Wanted: $x \in \bar{S} \cup \bar{T}$.

By contrary, assume $x \notin \bar{S} \cup \bar{T} \Rightarrow x \notin \bar{S}$ and $x \notin \bar{T}$;

$$
\Rightarrow \exists r_{1}>0 \ni B\left(x ; r_{1}\right) \cap S=\emptyset \text { and } \exists r_{2}>0 \ni B\left(x ; r_{2}\right) \cap T=\emptyset ;
$$

Put $r=\operatorname{Min}\left\{r_{1}, r_{2}\right\}$. According to a previous result, $B(x ; r) \subseteq B\left(x ; r_{i}\right)$ for $i=1,2$. Then;

$$
\begin{aligned}
& B(x ; r) \cap S \subseteq B\left(x ; r_{1}\right) \cap S=\emptyset \text { and } B(x ; r) \cap T \subseteq B\left(x ; r_{2}\right) \cap T=\varnothing ; \\
& \Rightarrow B(x ; r) \cap S=\emptyset \text { and } B(x ; r) \cap T=\emptyset \Rightarrow B(x ; r) \cap(S \cup T)=\emptyset .
\end{aligned}
$$

Therefore, $x \notin \overline{S \cup T}$ (a contradiction). Thus, $x \in \bar{S} \cup \bar{T}$ and $\overline{S \cup T} \subseteq \bar{S} \cup \bar{T}$. From i and ii, $\overline{S \cup T}=\bar{S} \cup \bar{T}$.

Proof 8:

Wanted: $S^{\circ}={\overline{S^{c}}}^{c}$.
For $S^{\circ} \subseteq{\overline{S^{c}}}^{c}$: Let $x \in S^{\circ}$. Wanted: $x \in{\overline{S^{c}}}^{c}$.
Since $x \in S^{\circ} \Rightarrow \exists r>0 \ni B(x ; r) \subseteq S \Rightarrow B(x ; r) \cap S^{c}=\varnothing$

$$
\Rightarrow x \notin \overline{S^{c}} \Rightarrow x \in{\overline{S^{c}}}^{c} \Rightarrow S^{\circ} \subseteq{\overline{S^{c}}}^{c} .
$$

For $\bar{S}^{c} \subseteq S^{\circ}$: Let $x \in{\overline{S^{c}}}^{c}$. Wanted: $x \in S^{\circ}$.
Since $x \in{\overline{S^{c}}}^{c} \Rightarrow x \notin \overline{S^{c}} \Rightarrow \exists r>0 \ni B(x ; r) \cap S^{c}=\emptyset \Rightarrow B(x ; r) \subseteq S \Rightarrow$ $x \in S^{\circ} \Rightarrow{\overline{S^{c}}}^{c} \subseteq S^{\circ}$.

Therefore, our goal is down.
Exercise: Prove the axioms 1,2,4,5 and 7 above.

Definition (Accumulation (cluster) points of a set):

Let (M, d) be a metric space and let $S \subseteq M$. A point $x \in M$ is said to be an Accumulation point of S if, and only if, for every open ball $B_{M}(x ; r)$;

$$
B_{M}(x ; r) \cap S-\{x\} \neq \emptyset .
$$

The set of all Accumulation points of a set S is called the derived set of S which is denoted by S^{\prime} or $d S$. Note that, $S^{\prime} \subseteq S$.

Remark:

Let (M, d) be a metric space and let $S \subseteq M$. Then:

1. x is an Accumulation point of S if, and only if, every open ball $B_{M}(x ; r)$ contains points of S different from x.
2. x is an Accumulation point of S if, and only if, x is an adherent point of $S-\{x\}$.

Example:

In the Euclidean metric space $(\mathbb{R},||$.$) , let;$

$$
\begin{aligned}
A=(-3,4), B=[0,1], C=[3,7], D=\mathbb{Z}, E=\mathbb{Q} \\
\Rightarrow A^{\prime}=[-3,4], B^{\prime}=[0,1], C^{\prime}=[3,7], D^{\prime}=\emptyset, E^{\prime}=\mathbb{R} .
\end{aligned}
$$

Example:

In the Euclidean metric space $\left(\mathbb{R}^{2},\|\|.\right)$, let ;

$$
\begin{gathered}
A=\left\{(x, y): x^{2}+y^{2}<1\right\}, \quad B=\left\{(x, y): x^{2}+y^{2}>1\right\} \\
\quad C=\left\{(x, y): x^{2}+y^{2}=1\right\}, \quad D=\{(x, y): x \geq 0, y \geq 0\} \\
\Rightarrow A^{\prime}=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}, \quad B^{\prime}=\left\{(x, y): x^{2}+y^{2} \geq 1\right\} \\
\\
C^{\prime}=\left\{(x, y): x^{2}+y^{2}=1\right\}, \quad D^{\prime}=\{(x, y): x \geq 0, y \geq 0\}
\end{gathered}
$$

Theorem (Axioms of a Derived set):

Let (M, d) be a metric space and let $S, T \subseteq M$. Then

1. $S \subseteq T \Longrightarrow S^{\prime} \subseteq T^{\prime}$.
2. $(S \cup T)^{\prime}=S^{\prime} \cup T^{\prime}$.
3. In general, $(S \cap T)^{\prime} \subseteq S^{\prime} \cap T^{\prime}$, but $(S \cap T)^{\prime} \neq S^{\prime} \cap T^{\prime}$.
4. $\bar{S}=S^{\prime} \cup S$.

Proof 4:

To show that, $\bar{S}=S^{\prime} \cup S$, we need to prove:
i. $S^{\prime} \cup S \subseteq \bar{S}$.
ii. $\bar{S} \subseteq S^{\prime} \cup S$.

For i: From the definitions of the closure and the derived set of S, we have $S \subseteq \bar{S}$ and $S^{\prime} \subseteq \bar{S}$. Therefore, $S^{\prime} \cup S \subseteq \bar{S}$.

For ii: let $x \in \bar{S}$. Wanted: $x \in S^{\prime} \cup S$.
By contrary, assume that $x \notin S^{\prime} \cup S \Longrightarrow x \notin S^{\prime}$ and $x \notin S$;
$x \notin S^{\prime} \Rightarrow \exists r>0, B(x ; r) \cap S-\{x\}=\emptyset$.
$\Rightarrow \exists r>0, B(x ; r) \cap S=\emptyset,($ since $x \notin S$ and $S-\{x\}=S)$.
$\Rightarrow x \notin \bar{S}$, (a contradiction).
$\Rightarrow x \in S^{\prime} \cup S$. Accordingly, $\bar{S} \subseteq S^{\prime} \cup S$.

From i and ii we have $\bar{S}=S^{\prime} \cup S$.

Definition (Boundary of a set):

Let (M, d) be a metric space and let $S \subseteq M$. A point $x \in M$ is said to be boundary point of a set S if, and only if, for every open ball $B_{M}(x ; r)$ contain at least one point of S and at least one point of S^{c}, i.e. $(B(x ; r) \cap S \neq \emptyset$ and $\left.B(x ; r) \cap S^{c} \neq \emptyset\right)$, i.e. $\left(x \in \bar{S} \cap \overline{S^{c}}\right)$.

The set of all boundary points is called boundary set of S and it denoted by ∂S. In fact; $\partial S=\bar{S} \cap \overline{S^{c}}$.

Example:

In the Euclidean metric space $(\mathbb{R},| |)$, let $A=(-3,3), B=\mathbb{Z}, C=\mathbb{Q}$.
i. $\quad \partial A=\bar{A} \cap \overline{A^{c}}=[-3,3] \cap((-\infty,-3] \cup[3, \infty))=\{-3,3\}$.
ii. $\quad \partial B=\bar{B} \cap \overline{B^{c}}=\mathbb{Z} \cap\left(\mathrm{U}_{n \in z}[n, n+1]\right)=\mathbb{Z}$.
iii. $\quad \partial C=\bar{C} \cap \overline{C^{c}}=\mathbb{R} \cap \mathbb{R}=\mathbb{R}$.

Example:

In the Euclidean metric space $\left(\mathbb{R}^{2},\| \|\right)$, let;

$$
\begin{aligned}
& A=\left\{(x, y): x^{2}+y^{2}<1\right\}, \quad B=\left\{(x, y): x^{2}+y^{2}>1\right\} \\
& C=\left\{(x, y): x^{2}+y^{2}=1\right\}
\end{aligned}
$$

i. $\quad \partial A=\bar{A} \cap \overline{A^{c}}=\left\{(x, y): x^{2}+y^{2} \leq 1\right\} \cap\left\{(x, y): x^{2}+y^{2} \geq 1\right\}$
$=\left\{(x, y): x^{2}+y^{2}=1\right\}$.
ii. $\quad \partial B=\bar{B} \cap \overline{B^{c}}=\left\{(x, y): x^{2}+y^{2} \geq 1\right\} \cap\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$
$=\left\{(x, y): x^{2}+y^{2}=1\right\}$.
iii. $\quad \partial C=\bar{C} \cap \overline{C^{c}}=\left\{(x, y): x^{2}+y^{2}=1\right\} \cap\left\{(x, y): x^{2}+y^{2} \geq 1\right\} \cup$ $\left\{(x, y): x^{2}+y^{2} \leq 1\right\}=\left\{(x, y): x^{2}+y^{2}=1\right\}$.

Exercises:

Let (M, d) be a metric space and let $A, B \subseteq M$. Then:

1. $\partial A=\emptyset$ if, and only if, A is both open and closed in M.
2. $\partial\left(A^{c}\right)=\partial A$.

3. If $\bar{A} \cap \bar{B}=\emptyset$, then $\partial(A \cup B)=\partial A \cup \partial B$.
4. If $A^{\circ}=B^{\circ}=\emptyset$ and if A is closed in M, then $(A \cup B)^{\circ}=\emptyset$.

Definition (Bounded set):

Let (M, d) be a metric space. A subset S if M is called bounded if $S \subseteq B_{M}(x ; r)$, for some $r>0$ and some $a \in M$.

Example:

In the Euclidean metric space $(\mathbb{R},| |)$, the set $A=(-3,5] \cup\{7\}$ is bounded since we can find an open ball $B(1 ; 7)=(-6,8)$ such that $A \subseteq B(1 ; 7)$, as shown in the following figure;

Example:

In the Euclidean metric space $\left(\mathbb{R}^{2},\| \|\right)$, the set $A=\left\{(x, y) \in \mathbb{R}^{2}:-1 \leq x \leq 1,-1 \leq y \leq 1\right\}$ is bounded set since we can find an open ball $B((0,0) ; 2)=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<4\right\}$ such that $A \subseteq B((0,0) ; 2)$, as shown in the following figure;

Theorem (Bolzano-Weierstrass):-

Let S be a bounded subsets of the Euclidean metric space ($\left.\mathbb{R}^{n},\|\|.\right)$ and it has infinitely many points. Then there is at least one point in \mathbb{R}^{n} which is an accumulation point of S.

Remark: To simplify the idea of the proof, we shall give it in the Euclidean space \mathbb{R}, (i.e. when $n=1$).

Proof:

Since S is bounded in \mathbb{R}, then we can find an open interval $(-a, a)$ such that $S \subseteq B(0 ; a)=(-a, a) \Rightarrow S \subseteq[-a, a]$.

1. Subdivide $[-a, a]$ into $[-a, 0]$ and $[0, a]$. At least one of the subintervals $[-a, 0]$ or $[0, a]$ contains an infinite subset of S. Denote such subinterval by [a_{1}, b_{1}].
2. Bisect $\left[a_{1}, b_{1}\right]$ and obtain a subinterval $\left[a_{2}, b_{2}\right]$ containing an infinite subset of S and continue this process.
3. In this way, a countable collection of closed subintervals $\left[a_{1}, b_{1}\right]$, $\left[a_{2}, b_{2}\right], \ldots,\left[a_{n}, b_{n}\right], \ldots$ was obtained. The $n^{\text {th }}$ closed interval $\left[a_{n}, b_{n}\right]$ being of length $\quad b_{n}-a_{n}=a / 2^{n-1}$. Therefore, the length of $\left[a_{n}, b_{n}\right.$] is approach to zero as $n \longrightarrow \infty$.
4. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}, \ldots\right\}$ and $B=\left\{b_{1}, b_{2}, \ldots, b_{n}, \ldots\right\}$. Since $a_{i}<b_{1}$, $\forall i=1,2, \ldots$, hence A is bounded above and $\operatorname{Sup}(A)$ is exist. Moreover, B is bounded below and $\operatorname{In} f(B)$ is exist, since $b_{i}>a_{1}, \forall i=1,2, \ldots$. In fact, we have;

$$
a_{1}<a_{2}<\cdots<a_{n}<\cdots<b_{n}<\cdots<b_{2}<b_{1}
$$

Therefore, $\operatorname{Sup}\{A\}=\operatorname{Inf}\{B\}=x$ say, (as an exercise prove that). Notice that, x may or may not belong to S.

Now, we shall prove that x is an accumulation point of S, i.e. we need to show that $\forall r>0, B(x ; r) \cap S-\{x\} \neq \emptyset$.

Let $>0 \Longrightarrow \frac{r}{4 a}>0$. By using a previous result;

$$
\exists n \in \mathbb{Z}^{+} \ni \frac{1}{2^{n}}<\frac{r}{4 a} \Rightarrow \frac{a}{2^{n-1}}<\frac{r}{2} \Rightarrow b_{n}-a_{n}=\frac{a}{2^{n-1}}<\frac{r}{2}
$$

Thus, there exists a closed interval $\left[a_{n}, b_{n}\right]$ has length less than $\frac{r}{2}$. According, $x=\operatorname{Sup}\{A\}=\operatorname{Inf}\{B\}$, so $a_{n}<x<b_{n}$ and;

$$
\left[a_{n}, b_{n}\right] \subseteq B\left(x ; \frac{r}{2}\right)=\left(x-\frac{r}{2}, x+\frac{r}{2}\right) \subseteq B(x ; r)=(x-r, x+r)
$$

But $\left[a_{n}, b_{n}\right.$] contains an infinite subset of S. Therefore, $B(x ; r)$ contains an infinite subset of $S \Rightarrow B(x ; r) \cap S \neq \emptyset \Rightarrow B(x ; r) \cap S-\{x\} \neq \emptyset$. Thus, for all open 1-ball $B(x ; r)=(x-r, x+r)$ we have, $B(x ; r) \cap S-\{x\} \neq \emptyset$. Hence x is an accumulation point of S.

Theorem:

If x is an accumulation point of a subset S in the Euclidean space \mathbb{R}^{n}, then every open n-ball $B(x ; r)$ contains infinitely many points of S.

Proof : By contrary, suppose there is an open n-ball $B(x ; r)$ such that;

$$
B(x ; r) \cap S-\{x\}=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} .
$$

Since $a_{1}, a_{2}, \ldots, a_{n} \in B(x ; r)$, hence;

$$
\left\|x-a_{1}\right\|<r,\left\|x-a_{2}\right\|<r, \ldots,\left\|x-a_{n}\right\|<r .
$$

Put $r^{\prime}=\frac{1}{2} \operatorname{Min}\left\{\left\|x-a_{1}\right\|,\left\|x-a_{2}\right\|, \ldots,\left\|x-a_{n}\right\|\right\}>0$. We need to show that, $B\left(x ; r^{\prime}\right) \cap S-\{x\}=\emptyset$.

Suppose that $B\left(x ; r^{\prime}\right) \cap S-\{x\} \neq \varnothing$

$$
\begin{aligned}
& \Rightarrow \exists \text { at least } y \in B\left(x ; r^{\prime}\right) \cap S-\{x\} . \\
& \Rightarrow y \in B\left(x ; r^{\prime}\right) \text { and } y \in S-\{x\} . \\
& \Rightarrow\|x-y\|<r^{\prime} \text { and } y \in S-\{x\} .
\end{aligned}
$$

Since $a_{i} \in B(x ; r) \Rightarrow\left\|x-a_{i}\right\|<r, \forall 1 \leq i \leq n$.

$$
\text { But } r^{\prime}<\left\|x-a_{i}\right\|<r, \forall 1 \leq i \leq n
$$

Therefore, $\|x-y\|<r^{\prime}<r$ and $y \in S-\{x\}$.

$$
\begin{aligned}
& \Rightarrow\|x-y\|<r \text { and } y \in S-\{x\} . \\
& \Rightarrow y \in B(x ; r) \text { and } y \in S-\{x\} . \\
& \Rightarrow y \in B(x ; r) \cap S-\{x\} . \\
& \Rightarrow y \in\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} .
\end{aligned}
$$

So, $\exists 1 \leq i \leq n \quad \ni y=a_{i}$ and this contradicts the fact; $a_{i} \notin B\left(x ; r^{\prime}\right)$, for all $1 \leq i \leq n$. Therefore, $B\left(x ; r^{\prime}\right) \cap S-\{x\}=\varnothing \Rightarrow x$ not an accumulation point of S (a contradiction). Thus, every open ball $B(x ; r)$ contains infinitely many points of S.

Remark:

The converse of the above theorem is not true in general. That is, if $S \subseteq \mathbb{R}^{n}$ is an infinite set of points, then S need not has an accumulation point. For example, the set of integers \mathbb{Z} is an infinite subset of \mathbb{R}, but it has no accumulation points, i.e. $\mathbb{Z}^{\prime}=\varnothing$.

Exercise:

Prove that every finite set S of \mathbb{R}^{n} has no accumulation point.

Cantor Intersection Theorem:

Let $\left\{Q_{1}, Q_{2}, \ldots, Q_{n}, \ldots\right\}$ be a countable collection of non-empty sets in the Euclidean space \mathbb{R}^{n} such that:

1. $Q_{k+1} \subseteq Q_{k}, \forall k=1,2, \ldots$.
2. Q_{k} is closed, $\forall k=1,2, \ldots$ and;
3. Q_{1} is bounded .

Then the intersection $\cap_{k=1}^{\infty} Q_{k}$ is closed and non-empty .
Proof: Let $S=\cap_{k=1}^{\infty} Q_{k}$. Since Q_{k} is closed set in $\mathbb{R}^{n}, \forall k=1,2, \ldots$, hence S is closed set in \mathbb{R}^{n} (by applying a previous result that state: the intersection of any collection of closed sets is a closed set). We need only to show that, $S \neq \varnothing$.

i. If Q_{k} is a finite set for some $k=1,2, \ldots$, with $\left|Q_{k}\right|=n$, then from 1 above we have;

$$
\ldots \subseteq Q_{k+\ell+2}=\emptyset \subseteq Q_{k+\ell+1}=\emptyset \subseteq Q_{k+\ell} \subseteq \cdots \subseteq Q_{k+1} \subseteq Q_{k} \subseteq \cdots \subseteq Q_{1},
$$ for some $1 \leq \ell \leq n$. But, our assumption states $Q_{k} \neq \emptyset, \forall k=1,2, \ldots .$. That is the collection $\left\{Q_{1}, Q_{2}, \ldots, Q_{k}, \ldots\right\}=\left\{Q_{1}, Q_{2}, \ldots, Q_{k+\ell}\right\}$ is finite and hence $S=\cap_{k=1}^{\infty} Q_{k}=Q_{k+\ell} \neq \emptyset$.

ii. Assume that each of Q_{k} contains infinitely many points, $\forall k=1,2, \ldots$. Let $A=\left\{x_{1}, x_{2}, \ldots, x_{k}, \ldots\right\}$, where $x_{k} \in Q_{k},, \forall k=1,2, \ldots .$. Since $Q_{k} \subseteq Q_{1}$, $\forall k=1,2, \ldots$, hence $A \subseteq Q_{1}$. But Q_{1} is bounded and infinite in \mathbb{R}^{n}, so as an application of Bolzano-Weierstrass theorem, there exists an accumulation point say x of A in \mathbb{R}^{n}. We will show that, $x \in S$, i.e. $S \neq \emptyset$.
Since $x \in \mathbb{R}^{n}$ is an accumulation point of A, then;

$$
\forall r>0, B(x ; r) \cap A-\{x\} \neq \varnothing
$$

But $Q_{k}(\forall k=1,2, \ldots)$ contains all (except (possibly) a finite number) of the points of $A \Rightarrow B(x ; r) \cap Q_{k}-\{x\} \neq \emptyset, \forall k=1,2, \ldots$.

$$
\Rightarrow x \in Q_{k}^{\prime}, \forall k=1,2, \ldots
$$

But Q_{k} is closed in \mathbb{R}^{n} and $Q_{k}^{\prime} \subseteq Q_{k}$, hence $x \in Q_{k}, \forall k=1,2, \ldots$. Therefore, $x \in S=\cap_{k=1}^{\infty} Q_{k} \neq \emptyset$.

Definition (covering):

Let (M, d) be a metric space and let $S \subseteq M$. A collection $\Omega=\left\{G_{i} \mid i \in I\right\}$ of a sets in M is called a covering of S if $S \subseteq \cup_{i \in I} G_{i}$. If G_{i} is an open set in M for all $i \in I$, then the collection Ω is called an open covering of S. If a finite subcollection of Ω is also a covering of S, then this finite subcollection of Ω is called a finite subcovering of S.
Example 1: In the Euclidean space \mathbb{R}, the collection $\Omega=\{(n, n+2): n \in Z\}$ is a countable open covering of \mathbb{R}, as shown in the following figure:

Example 2:

In the Euclidean space \mathbb{R}, the collection $\Omega=\left\{\left(\frac{1}{n}, \frac{2}{n}\right): n=2,3, \ldots\right\}$ is a countable open covering of the open interval (0.1), as shown in the following figure:

Example 3:

In the Euclidean space \mathbb{R}^{2}, the collection $\Omega=\{B((x, x) ; x) \mid x>0\}$ is an open covering of the set $S=\{(x, y) \mid x>0, y>0\}$. Note that, The collection Ω is not countable. In $\Omega=\{B(x ; x) \mid x>0$ and $x \in \mathbb{Q}\}$, then Ω is a countable covering of S.

Exercise:

Let $\Psi=\left\{B_{1}, B_{2}, \ldots\right\}$ denotes the countable collection of all n-balls having rational radii and centers at points with rational coordinates. Assume $x \in \mathbb{R}^{n}$ and S be an open set in \mathbb{R}^{n} such that $x \in S$. Prove that, there exists $B_{k} \in \Psi$ such that $x \in B_{k} \subseteq S$.

Theorem (Lindelöf covering theorem):

Let A be a subset of the Euclidean space \mathbb{R}^{n} and let Ω be an open covering of A. Then there is a countable subcollection of Ω which also covers A.

Proof:

Let $\Psi=\left\{B_{1}, B_{2}, \ldots\right\}$ be the countable collection of all n-balls having centers with rational coordinates and rational radii. Since Ω is an open covering of $A \Rightarrow A \subseteq \cup_{S \in \Omega} S \Rightarrow \forall x \in A, \exists S_{x} \in \Omega \ni x \in S_{x}$. Since S_{x} is an open set in \mathbb{R}^{n} and $x \in S_{x}$, so by applying the above exercise we have;

$$
\exists B_{k} \in \Psi \ni x \in B_{k} \subseteq S_{x} .
$$

There are, of course infinitely many such B_{k} in Ψ such that $x \in B_{k} \subseteq S_{x}$. So, we will choose only one of these open n-balls, for example the one of smallest index, say $m(x)=\operatorname{Min}\left\{k: x \in B_{k} \subseteq S_{x}\right\} \Rightarrow x \in B_{m(x)} \subseteq S_{x} \ldots$ (1)

From above we deduce the following, $\forall x \in A, \exists B_{m(x)} \in \Psi \ni x \in B_{m(x)}$.

$$
\Rightarrow A \subseteq \cup_{x \in A} B_{m(x)} \quad \ldots \text { (2) }
$$

Therefore, $\left\{B_{m(x)} \mid x \in A\right\}$ is a countable subcollection of Ψ which also covers A. From (1) and (2) above, we have;

$$
A \subseteq \cup_{x \in A} B_{m(x)} \subseteq \cup_{x \in A} S_{x} .
$$

Thus, $\left\{S_{x} \mid x \in A\right\}$ form a subcollection of Ω and an open covering of A. Since, $\forall x \in A, \exists S_{x} \in \Omega$ (and hence $\exists B_{m(x)} \in \Psi$ corresponding to the open set S_{x}) such that $x \in B_{m(x)} \subseteq S_{x}$. That is, there is $1-1$ correspondence between $\left\{B_{m(x)} \mid x \in A\right\}$ and $\left\{S_{x} \mid x \in A\right\}$. Therefore, as $\left\{B_{m(x)} \mid x \in A\right\}$ is a countable covering of A, we deduce that $\left\{S_{x} \mid x \in A\right\}$ form a countable subcollection of Ω which also covers A.

Remark:

The Lindelöf covering theorem states that, from any open covering of a set A in \mathbb{R}^{n} we can extract a countable subcovering of A. The Hine-Borel theorem tells us that if, in addition, we know that A is closed and bounded, we can reduce the countable subcovering of A to a finite subcovering of A.

Theorem (Hiene-Borel covering theorem):

Let A be a closed and bounded set in the Euclidean space \mathbb{R}^{n}. If Ω is an open covering of A, then there is a finite subcollection of Ω which also covers A.

Proof:

Since F is an open covering of A, hence by Lindelöf covering theorem, there exists a countable subcollection of Ω, say $\Psi=\left\{I_{1}, I_{2}, \ldots\right\}$ also covers A, i.e. $A \subseteq \bigcup_{k \geq 1} I_{k}$. We shall show that $\exists m \geq 1 \ni A \subseteq \bigcup_{k=1}^{m} I_{k}$.

Now, consider for $m \geq 1$ the union $S_{m}=\bigcup_{k=1}^{m} I_{k}$. Clearly, S_{m} is an open set of \mathbb{R}^{n} since it is a union of open sets $I_{1}, I_{2}, \ldots, I_{m}, \forall m \geq 1$. Therefore, $S_{m}^{c}=\mathbb{R}^{n}-S_{m}$ is closed $\forall m \geq 1$. Define a countable collection of sets $\left\{Q_{1}, Q_{2}, \ldots\right\}$ as follows:

$$
Q_{1}=A \text { and } Q_{m}=A \cap S_{m}^{c}, \forall m \geq 1
$$

We will show that $Q_{m}=\emptyset$ for some $m \geq 1$, which implies that, $A \cap S_{m}^{c}=\emptyset$, for some $m \geq 1$. This will give as $A \subseteq\left(S_{m}^{c}\right)^{c}=S_{m}=\bigcup_{k=1}^{m} I_{k}$ for some $m \geq 1$, i.e. $A \subseteq \bigcup_{k=1}^{m} I_{k}$ for some m, and hence $\left\{I_{1}, I_{2}, \ldots, I_{m}\right\}$ is a finite subcover of A of Ω, so, our aim is hold.

To do this, by contrary suppose that, $Q_{m} \neq \emptyset, \forall m \geq 1$. Observe that, the sets $Q_{m}, \forall m \geq 1$ have the following properties:
i. $Q_{1}=A$ is closed and Q_{m}, is closed set (since Q_{m} is the intersection of closed sets A and S_{m}^{c}), $\forall m \geq 1$.
ii. $Q_{m} \supseteq Q_{m+1} \quad \forall m \geq 1$. (In fact: $S_{m} \subseteq S_{m+1} m \geq 1 \Rightarrow S_{m}^{c} \supseteq S_{m+1}^{c} \forall m>1$ $\Rightarrow Q_{m} \supseteq Q_{m+1} \forall m>1$. But $Q_{m}=A \cap S_{m}^{c}, \forall m>1$.Therefore, $Q_{m} \subseteq Q_{1}$, $\forall m \geq 1$. Hence $Q_{m} \supseteq Q_{m+1}, m \geq 1$).
iii. $Q_{1}=A$ is bounded.

From Cantor intersection theorem, we have $\bigcap_{m=1}^{\infty} Q_{m} \neq \emptyset$, i.e. $\exists x \in Q_{1} \cap Q_{2} \cap$ $Q_{3} \cap \ldots \neq \emptyset$. But $A=Q_{1}$, thus $\exists x \in A \cap Q_{2} \cap Q_{3} \cap \ldots \neq \emptyset$.
$\Rightarrow \exists x \in A \ni x \in Q_{m}, \forall m \geq 1$, where $Q_{m}=A \cap S_{m}^{c}, \forall m \geq 1$.
$\Rightarrow \exists x \in A \ni x \notin S_{m}=\bigcup_{k=1}^{m} I_{k}, \forall m \geq 1$.
$\Longrightarrow \exists x \in A \exists x \notin I_{k}, \forall k \geq 1 \Longrightarrow A \nsubseteq \bigcup_{k=1}^{m} I_{k}$, this is a contradiction. Hence, $Q_{m}=\emptyset$ for some $m \Longrightarrow A \subseteq S_{m}=\bigcup_{k=1}^{m} I_{k}$ for some $m \Longrightarrow\left\{I_{1}, I_{2}, \ldots, I_{m}\right\}$ forms a finite open subcovering of A contained of Ω.

Compactness in metric spaces

Definition:

Let (M, d) be a metric space. A subset S of M is called compact if every open covering of S contains a finite subcovering.

Theorem:

Let S be a compact subset of a metric space (M, d). Then:

1. S is closed and bounded .
2. Every infinite subset of S has an accumulation point in S.

Proof (1):

Proof S bounded in M:

Choose a point p in S. The collection $\left\{B_{M}(p ; k) \mid k=1,2,3, \ldots\right\}$ forms an open covering of S, i.e. $S=\cup_{m=1}^{\infty} B_{M}(p ; k)$. But S is compact, therefore there exists a finite subcovering of S, i.e. $S \subseteq \cup_{k=1}^{n} B_{M}(p ; k)$. Since $\cup_{k=1}^{n} B_{M}(p ; k)=B_{M}(p ; n)$, hence $S \subseteq B_{M}(p ; n)$ and S is bounded in M.

Proof S is closed set in M :

We know that S is closed in M if and only if $S^{\prime} \subseteq S$, i.e. if S contains all its accumulation points. Consequently, S is not closed in M if, and only if, there exists an accumulation points of S which is not belong to S, i.e. $\exists y \in S^{\prime} \ni$ $y \notin S$. We want to prove S closed in M, so by contrary suppose S is not closed in M, i.e. suppose that \exists an accumulation point y of S such that $y \notin S$.

Now, for every $x \in S$, let $r_{x}=\frac{1}{2} d(x, y)$, where $r_{x}>0 \forall x \in S$, since $y \notin S$. The collection $\left\{B_{M}\left(x ; r_{x}\right) \mid x \in S\right\}$ forms an open covering of S, i.e. $S \subseteq \cup_{x \in S} B_{M}\left(x ; r_{x}\right)$. But S is compact $\Rightarrow \exists$ a finite subcover say;

$$
B_{M}\left(x_{1} ; r_{1}\right), B_{M}\left(x_{2} ; r_{2}\right), \ldots, B_{M}\left(x_{n} ; r_{n}\right), \text { i.e. } S \subseteq \cup_{k=1}^{n} B_{M}\left(x_{k} ; r_{k}\right)
$$

Let $r=\operatorname{Min}\left\{r_{2}, r_{2}, \ldots, r_{n}\right\}$. We will show that, $B_{M}(y ; r) \cap S-\{y\}=\emptyset$, i.e. $B_{M}(y ; r) \cap S=\varnothing$ (since by our assumption $y \notin S$) and this will contradict the fact that y is an accumulation point of S. To do this we need to show that $B_{M}(y ; r) \cap B_{M}\left(x_{k} ; r_{x_{k}}\right)=\emptyset$ for $k=1,2,3, \ldots, n$.
let $z \in B_{M}(y ; r)$, we will show that $z \notin B_{M}\left(x_{k} ; r_{x_{k}}\right)$ for all $k=1,2,3, \ldots, n$, i.e. $d\left(z, x_{k}\right) \geq r_{x_{k}}$. The triangle inequality gives as;

$$
\begin{gathered}
d\left(y, x_{k}\right) \leq d(y, z)+d\left(z, x_{k}\right) \\
\Rightarrow d\left(z, x_{k}\right) \geq d\left(y, x_{k}\right)-d(y, z)=2 r_{x_{k}}-d(y, z)>2 r_{x_{k}}-r \\
\geq 2 r_{x_{k}}-r_{x_{k}}=r_{x_{k}} \\
\Rightarrow d\left(z, x_{k}\right)>r_{x_{k}} \Rightarrow z \notin B_{M}\left(x_{k} ; r_{x_{k}}\right) \\
\Rightarrow z \notin \cup_{k=1}^{n} B_{M}\left(x_{k} ; r_{x_{k}}\right) \Rightarrow B_{M}(y ; r) \cap\left(\cup_{k=1}^{n} B_{M}\left(x_{k} ; r_{x_{k}}\right)\right)=\emptyset
\end{gathered}
$$

But $S \subseteq \cup_{k=1}^{n} B_{M}\left(x_{k} ; r_{x_{k}}\right) \Rightarrow B_{M}(y ; r) \cap S=\emptyset \Rightarrow B_{M}(y ; r) \cap S-\{y\}=\emptyset$. Therefore, y is not accumulation point of S (contradiction), Hence S is closed in

Proof (2):

Let T be an infinite subset of S. Want to show that: $\exists x \in S$ such that x is an accumulation point of T. By contrary suppose that x is not accumulation point of T for all $x \in S \Rightarrow \forall x \in S \exists$ an open ball $B_{M}\left(x ; r_{x}\right)$ such that;

$$
\begin{gathered}
B_{M}\left(x ; r_{x}\right) \cap T-\{x\}=\emptyset \\
\Rightarrow B_{M}\left(x ; r_{x}\right) \cap T=\emptyset(\text { if } x \notin T) \text { or } B_{M}\left(x ; r_{x}\right) \cap T=\{x\}(\text { if } x \in T) \\
\Rightarrow B_{M}\left(x ; r_{x}\right) \text { contains at most one point of } T \forall x \in S
\end{gathered}
$$

The collection $\left\{B_{M}\left(x ; r_{x}\right) \mid x \in S\right\}$ forms an open covering of S since $S \subseteq \bigcup_{x \in S} B_{M}\left(x ; r_{x}\right)$. But S is compact, then \exists a finite subcovering say
$B_{M}\left(x_{1} ; r_{1}\right), B_{M}\left(x_{2} ; r_{2}\right), \ldots, B_{M}\left(x_{n} ; r_{n}\right)$, i.e. $S \subseteq \cup_{k=1}^{n} B_{M}\left(x_{k} ; r_{k}\right)$. Since $T \subseteq S \Rightarrow$ $T \subseteq \bigcup_{k=1}^{n} B_{M}\left(x_{k} ; r_{k}\right) \ldots(*)$. But $B_{M}\left(x_{k} ; r_{k}\right) \forall(k=1,2, \ldots, n)$ contains at most one point of T, therefore (from (*)) T is finite set (contradiction). Hence, $\exists x \in S$ such that x is an accumulation point of T.

Remark:

i. In the Euclidean space \mathbb{R}^{n}, each of properties (1) and (2) is equivalent to compactness, i.e. In the Euclidean space \mathbb{R}^{n}, the following three statements are equivalent: S is compact in $\mathbb{R}^{n} \Leftrightarrow S$ is closed and bounded in $\mathbb{R}^{n} \Leftrightarrow$ every finite subset of S has an accumulation point in S.
ii. In general, in any metric space (M, d), we have
a. S is compact in $M \Rightarrow S$ is closed and bounded in M .
b. S is closed and bounded in $M \nRightarrow S$ is compact in M.
c. S is compact in $M \Leftrightarrow$ every infinite subset of S has an accumulation point in S.

Exercise:

Consider the metric space \mathbb{Q} (of rational numbers) of the Euclidean space $(\mathbb{R},|\cdot|)$ and let S consists of the rational numbers in the open interval (a, b), where a and b are irrational. Show that $S=(a, b) \cap \mathbb{Q}$ is closed and bounded in \mathbb{Q}, but S is not compact in \mathbb{Q}.

Theorem:

Let S be a closed subset of a compact metric space M. Then S is compact in M.

Proof:

Let $\Omega=\left\{G_{i} \mid \mathrm{i} \in I\right\}$ be an open covering of S, i.e. $S \subseteq \mathrm{U}_{i \in I} G_{i}$. We show that a finite subcollection of Ω is also cover S. Since S is closed in $M \Rightarrow S^{c}$ is open in $M \Rightarrow \Omega \cup\left\{S^{c}\right\}$ forms an open covering of M. But M is compact, therefore \exists a finite subcovering say $\left\{G_{i_{1}}, G_{i_{2}}, \ldots, G_{i_{n}}, S^{c}\right\}$, i.e. $M=\left(\cup_{k=1}^{n} G_{i_{k}}\right) \cup S^{c}$. But
$\subseteq M \quad \Rightarrow S \subseteq\left(\cup_{k=1}^{n} G_{i_{k}}\right) \cup S^{c} . \quad$ But $\quad S \cap S^{c}=\emptyset \Rightarrow S \subseteq\left(\cup_{k=1}^{n} G_{i_{k}}\right) \Rightarrow$ $\left\{G_{i_{1}}, G_{i_{2}}, \ldots, G_{i_{n}}\right\}$ is a finite subcovering of $S \Rightarrow S$ is compact.

Theorem:

Let (S, d) be a metric subspace of a metric space (M, d) and let $X \subseteq S$.
Then X is compact in S if and only if, X is compact in M.

Proof:

Suppose X is compact in S. Wanted: X is compact in M, i.e. wanted: every open covering of X in M contains a finite subcovering. So, assume $\Omega=\left\{G_{i} \mid i \in I\right\}$ be an open covering of X in M, i.e. $X \subseteq \bigcup_{i \in I} G_{i}$ and G_{i} is an open set in $M, \forall i \in I$. Since, $X=X \cap S \subseteq\left(\cup_{i \in I} G_{i}\right) \cap S=\bigcup_{i \in I}\left(G_{i} \cap S\right)$, hence the collection $\Omega^{\prime}=\left\{H_{i}=G_{i} \cap S \mid i \in I\right\}$ of open sets in S forms an open covering of X in S. But X is compact in S, so Ω^{\prime} contains a finite subcovering say $\left\{H_{i_{1}}, H_{i_{2}}, \ldots, H_{i_{n}}\right\} . \quad$ That is, $X \subseteq \cup_{k=1}^{n} H_{i_{k}}=\cup_{k=1}^{n}\left(G_{i_{k}} \cap S\right)=\left(\cup_{k=1}^{n} G_{i_{k}}\right) \cap S$. Therefore, $X \subseteq \cup_{k=1}^{n} G_{i_{k}} \Rightarrow\left\{G_{i_{1}}, G_{i_{2}}, \ldots, G_{i_{n}}\right\}$ is a finite subcovering of Ω. Thus, X is compact in M.

Conversely, assume X is compact in M. Wanted: X is compact in S, i.e. wanted: every open covering of X in S contains a finite subcovering. Let $\Omega^{\prime}=\left\{H_{i} \mid i \in I\right\}$ be an open covering of X in S, i.e. $X \subseteq \bigcup_{i \in I} H_{i}$ and H_{i} is an open set in $S, \forall i \in$ I. That is, for every $i \in I$, there exists an open set G_{i} in M such that $H_{i}=G_{i} \cap S$. According to, $\quad X \subseteq \bigcup_{i \in I} H_{i}=\bigcup_{i \in I}\left(G_{i} \cap S\right)=\left(\bigcup_{i \in I} G_{i}\right) \cap S$, we have $X \subseteq \bigcup_{i \in I} G_{i}$. That is, $\Omega=\left\{G_{i} \mid i \in I\right\}$ forms an open covering of X in M. But X is compact in M, so Ω contains a finite subcovering say $\left\{G_{i_{1}}, G_{i_{2}}, \ldots, G_{i_{n}}\right\}$, i.e.;

$$
X \subseteq \cup_{k=1}^{n} G_{i_{k}} \Rightarrow X=X \cap S \subseteq\left(\cup_{k=1}^{n} G_{i_{k}}\right) \cap S=\cup_{k=1}^{n}\left(G_{i_{k}} \cap S\right)=\cup_{k=1}^{n} H_{i_{k}}
$$

Therefore, $X \subseteq \mathrm{U}_{k=1}^{n} H_{i_{k}} \Rightarrow \Omega^{\prime}$ contains a finite subcovering $\left\{H_{i_{1}}, H_{i_{2}}, \ldots, H_{i_{n}}\right\}$. Thus, X is compact in S.

Example:

Let $((0,1),| |)$ be a subspace of the Euclidean space $(\mathbb{R},| |)$. The interval $\left(0, \frac{1}{2}\right]$ is closed and bounded subset of $(0,1)$ as a subspace of \mathbb{R}. On the other hand, $\left(0, \frac{1}{2}\right]$ is bounded, but not closed in \mathbb{R}, so it is not compact in \mathbb{R} as an application of Hiene-Borel covering theorem and according to the above theorem ($\left.0, \frac{1}{2}\right]$ is not compact in $(0,1)$. This example is an illustration to the fact that, the closed and bounded subset of a metric space need not to be compact.

Sequences in metric spaces

Definition:

Let (M, d) be a metric space and let $\mathbb{Z}^{+}=\{1,2,3, \ldots\}$ be the set of positive integer numbers. Any mapping $f: \mathbb{Z}^{+} \rightarrow M$ is called a sequence in M.

Remarks:

i. A sequence in M assigns to each $n \in \mathbb{Z}^{+}$a uniquely determined point $x_{n} \in M$, i.e.;

$$
\begin{gathered}
1 \rightarrow f(1)=x_{1} \in M \\
2 \rightarrow f(2)=x_{2} \in M \\
\vdots \\
n \rightarrow f(n)=x_{n} \in M
\end{gathered}
$$

The points $x_{1}, x_{2}, \ldots, x_{3}, \ldots$ are called the terms (elements) of the sequence f in M. The term $f(n)=x_{n}$ is called the $n_{t h}$-term of f.
ii. We will denote the sequence $f: \mathbb{Z}^{+} \rightarrow M$ by any one of the following notations:

$$
\left\langle x_{n}\right\rangle_{n \in \mathbb{Z}^{+}}=\left\langle x_{1}, x_{2}, \ldots\right\rangle=\left\langle x_{n} \mid n \in \mathbb{Z}^{+}\right\rangle=\left\langle x_{n}\right\rangle
$$

iii. We have to distinguished between the sequence $\left\langle x_{n}\right\rangle=\left\langle x_{n} \mid n \in \mathbb{Z}^{+}\right\rangle$and its range, which is denoted by to be the set $=\left\{x_{n} \mid n \in \mathbb{Z}^{+}\right\}=\left\{x_{1}, x_{2}, \ldots\right\}$.

Example:

In the Euclidean space \mathbb{R};
i. Consider the sequence $\left\langle x_{n}\right\rangle=\left\langle(-1)^{n} \mid n \in \mathbb{Z}^{+}\right\rangle=\langle-1,1,-1,1, \ldots\rangle$. The range of the above sequence is $T=\left\{x_{n} \mid n \in \mathbb{Z}^{+}\right\}=\{-1,1\}$.
ii. If $b \in \mathbb{R}$, the sequence $\left\langle x_{n}\right\rangle=\langle b, b, \ldots\rangle$, all of whose terms are equal to b, is called the constant sequence. The range of the above sequence is $T=\{\mathrm{b}\}$.

Example:

In the Euclidean space \mathbb{R}, if $\left\langle x_{n}\right\rangle$ and $\left\langle y_{n}\right\rangle$ are sequences of real numbers then we can define:
a. Sum: $\left\langle x_{n}\right\rangle+\left\langle y_{n}\right\rangle=\left\langle x_{n}+y_{n}\right\rangle$
b. Difference: $\left\langle x_{n}\right\rangle-\left\langle y_{n}\right\rangle=\left\langle x_{n}-y_{n}\right\rangle$
c. Multiplication: $\left\langle x_{n}\right\rangle \cdot\left\langle y_{n}\right\rangle=\left\langle x_{n} \cdot y_{n}\right\rangle$
d. Multiplication by a scalar: if $c \in \mathbb{R}, c\left\langle x_{n}\right\rangle=\left\langle c x_{n}\right\rangle$
e. Quotient: $\left\langle x_{n}\right\rangle /\left\langle y_{n}\right\rangle=\left\langle x_{n} / y_{n}\right\rangle$ provided that $y_{n} \neq 0$ for all $n \in \mathbb{Z}^{+}$.

For example, if $\left\langle x_{n}\right\rangle=\langle 2 n\rangle=\langle 2,4,6, \ldots\rangle$ and $\left\langle y_{n}\right\rangle=\left\langle\frac{1}{n}\right\rangle=\left\langle 1, \frac{1}{2}, \frac{1}{3}, \ldots\right\rangle$ be two sequences of real numbers, Then;

1. $\langle 2 n\rangle+\left\langle\frac{1}{n}\right\rangle=\left\langle 2 n+\frac{1}{n}\right\rangle=\left\langle\frac{2 n^{2}+1}{n}\right\rangle=\left\langle 3, \frac{9}{2}, \frac{19}{3}, \ldots\right\rangle$.
2. $\langle 2 n\rangle-\left\langle\frac{1}{n}\right\rangle=\left\langle 2 n-\frac{1}{n}\right\rangle=\left\langle 2 n-\frac{1}{n}\right\rangle=\left\langle 3, \frac{7}{2}, \frac{17}{3}, \ldots\right\rangle$.
3. $\langle 2 n\rangle \cdot\left\langle\frac{1}{n}\right\rangle=\left\langle 2 n \cdot \frac{1}{n}\right\rangle=\langle 2\rangle=\langle 2,2,2, \ldots\rangle$.
4. $3\langle 2 n\rangle=\langle 6 n\rangle=\langle 6,12,18, \ldots\rangle$.
5. $\langle 2 n\rangle /\left\langle\frac{1}{n}\right\rangle=\left\langle 2 n / \frac{1}{n}\right\rangle=\left\langle\frac{2 n}{1 / n}\right\rangle=\left\langle 2 n^{2}\right\rangle=\langle 2,8,18, \ldots\rangle$.

Note that, if $\left\langle 1+(-1)^{n}\right\rangle=\langle 0,2,0,2, \ldots\rangle$, is a sequence of real numbers, therefore, $\langle 2 n\rangle /\left\langle 1+(-1)^{n}\right\rangle$ is not defined since some of the terms of the sequence $\left(1+(-1)^{n}\right)$ are equal to 0 .

Definition:

In the Euclidean space \mathbb{R}, a sequence $\left\langle x_{n}\right\rangle$ is called bounded above if $\exists M>0$ such that $\left|x_{n}\right| \leq M, \forall n \in \mathbb{Z}^{+}$, while it is called bounded below if $\exists N>0$ such that $N \leq\left|x_{n}\right|, \forall n \in \mathbb{Z}^{+}$。

Example:

The sequence of real numbers $\left\langle\frac{1}{n}\right\rangle=\left\langle 1, \frac{1}{2}, \frac{1}{3}, \ldots\right\rangle$ is bounded above since \exists a positive real number 2 such that $\left|\frac{1}{n}\right| \leq 2, \forall n \in \mathbb{Z}^{+}$. As well as, $\left\langle\frac{1}{n}\right\rangle$ is bounded below since \exists a positive real number 0 such that $0 \leq\left|\frac{1}{n}\right|, \forall n \in \mathbb{Z}^{+}$.

Definition:

In the Euclidean space \mathbb{R}, a sequence $\left\langle x_{n}\right\rangle$ is called increasing if;

$$
x_{n} \leq x_{n+1} \forall n \in \mathbb{Z}^{+}
$$

while it is called decreasing if, $x_{n} \geq x_{n+1} \forall n \in \mathbb{Z}^{+}$.

Example :

In the Euclidean space \mathbb{R}, a sequence $\left\langle\frac{1}{n}\right\rangle$ is decreasing since;

$$
x_{n+1}=\frac{1}{n+1}<\frac{1}{n}=x_{n}, \forall n \in \mathbb{Z}^{+}
$$

The sequence $\langle n\rangle=\langle 1,2,3, \ldots\rangle$ is increasing since;

$$
x_{n}=n<n+1=x_{n+1}, \forall n \in \mathbb{Z}^{+}
$$

The sequence $\left\langle(-1)^{n} \mid n \in \mathbb{Z}^{+}\right\rangle=\langle-1,1,-1,1, \ldots\rangle$ is neither increasing nor decreasing.

Definition (Convergent sequence in a metric space):

A sequence $\left\langle x_{n}\right\rangle$ of points in a metric space (M, d) is said to be converge if \exists a point $p \in M$ with the following property:

$$
\forall \epsilon>0, \exists N \in \mathbb{Z}^{+} \ni d\left(x_{n}, p\right)<\epsilon, \forall n \geq N \ldots\left(^{*}\right)
$$

In this case, we say that $\left\langle x_{n}\right\rangle$ is converges to p in M and we write;

$$
x_{n} \rightarrow p \text { as } n \rightarrow \infty \text { or } x_{n} \xrightarrow[n \rightarrow \infty]{ } p .
$$

If there is no such p in M, the sequence $\left\langle x_{n}\right\rangle$ is said to be diverge.

Remark:

1. The above definition of convergence implies that;

$$
x_{n} \rightarrow p \text { as } n \rightarrow \infty \Leftrightarrow d\left(x_{n}, p\right) \rightarrow 0 \text { as } n \rightarrow \infty
$$

i.e. a sequence $\left\langle x_{n}\right\rangle$ converges to p in M if, and only if, the sequence $\left\langle d\left(x_{n}, p\right)\right\rangle$ of positive real numbers converges to 0 in \mathbb{R}.
2. The convergence condition $(*)$ can be written as;

$$
\forall \epsilon>0, \exists N \in \mathbb{Z}^{+} \ni x_{n} \in B(p ; \epsilon), \forall n \geq N
$$

i.e. the open ball $B(p ; \epsilon)$ contains all the terms of the sequence $\left\langle x_{n}\right\rangle$ except a finite number of terms x_{1}, x_{2}, \ldots and x_{N-1} as shown in the following figure:

M331 (Mathematical Analysis(1))

3. The greatest integer of x denoted by $[x]$ is defined as follows:

$$
[x]=\left\{\begin{array}{cc}
x & \text { if } x \in \mathbb{Z} \\
\text { the nearest integer no. to } x \text { from the left } & \text { if } x \notin \mathbb{Z}
\end{array}\right.
$$

In fact, $[0]=0,[0.79]=0,[1]=1,[1.9]=1$. In general, $[x] \leq x, \forall x \in$ \mathbb{R}, also $[x]+1>x \forall x \in \mathbb{R}$

Example :

In the Euclidean metric space \mathbb{R}, the sequence $\left\langle\frac{1}{n}\right\rangle=\left\langle 1, \frac{1}{2}, \ldots\right\rangle$ converges to $0 \in \mathbb{R}$.

Solution: Let $\epsilon>0$. Wanted: $\exists N \in Z^{+} \ni n \in N \Rightarrow\left|\frac{1}{n}-0\right|<\epsilon$.
For a moment assume that;

$$
\left|\frac{1}{n}-0\right|<\epsilon \Rightarrow\left|\frac{1}{n}\right|<\epsilon \Rightarrow \frac{1}{n}<\epsilon \Rightarrow \frac{1}{\epsilon}<n \Rightarrow n>\frac{1}{\epsilon}
$$

So, if we choose $N=\left[\frac{1}{\epsilon}\right]+1 \in \mathbb{Z}^{+}$, then $\forall n \geq N \Rightarrow n \geq\left[\frac{1}{\epsilon}\right]+1 \Rightarrow n>\frac{1}{\epsilon}$

$$
\Rightarrow \frac{1}{n}<\epsilon \Rightarrow\left|\frac{1}{n}\right|<\epsilon \Rightarrow\left|\frac{1}{n}-0\right|<\epsilon .
$$

Therefore, $\left\langle\frac{1}{n}\right\rangle$ converges to 0 in \mathbb{R}.

Theorem:

A sequence in a metric space (M, d) can converge to at most one point in M.

Proof:

Assume that $x_{n} \rightarrow p$ as $n \rightarrow \infty$ and $y_{n} \rightarrow q$ as $n \rightarrow \infty$ in M. We will prove that $p=q$. By contrary suppose $p \neq q$ and let $\epsilon=d(p, q)>0$. As $x_{n} \rightarrow p \Rightarrow$
$\exists N_{1} \in \mathbb{Z}^{+}$such that $d\left(x_{n}, p\right)<\frac{\epsilon}{2}, \forall n \geq N_{1}$. Moreover as $y_{n} \rightarrow q \Rightarrow \exists N_{2} \in \mathbb{Z}^{+}$ such that $d\left(y_{n}, q\right)<\frac{\epsilon}{2}, \forall n \geq N_{2}$. The triangle inequality gives us;

$$
\epsilon=d(p, q) \leq d\left(p, x_{n}\right)+d\left(x_{n}, q\right)<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon \Rightarrow \epsilon=d(p, q)<\epsilon
$$

and this is a contradiction. Therefore $p=q$.

Remark:

If a sequence $\left\langle x_{n}\right\rangle$ is converges in a metric space M, the unique point to which it converges, say p, is called the limit point of the sequence and it is denoted by, $p=\lim _{n \rightarrow \infty} x_{n}$.

Remark:

The convergence or divergence of a sequence depends on the underlying space as well as on the metric as we illustrate in the following:

Example 1:

From a previous example, we know that the sequence $\left\langle\frac{1}{n}\right\rangle$ is converge in the Euclidean space \mathbb{R} to 0 . The same sequence is diverge in the Euclidean subspace $=(0,1]$, since $0 \notin S$.

Example 2:

The sequence $\left\langle\frac{1}{n}\right\rangle$ is converge to 0 in the Euclidean metric space $(\mathbb{R},| |)$. The same sequence does not converge to 0 in the discrete metric space (\mathbb{R}, d). In fact, if we suppose that $\frac{1}{n} \rightarrow 0$ as $n \rightarrow \infty \Rightarrow d\left(\frac{1}{n}, 0\right) \rightarrow 0$ as $n \rightarrow \infty$. But $\frac{1}{n} \neq 0, \forall n=1,2,3, \ldots$ and $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is the discrete metric, i.e.

$$
d(x, y)= \begin{cases}0 & \text { if } x=y \\ 1 & \text { if } x \neq y\end{cases}
$$

Therefore, $d\left(\frac{1}{n}, 0\right)=1 \forall n=1,2,3, \ldots$. Hence $d\left(\frac{1}{n}, 0\right)=1 \nrightarrow 0$ as $n \rightarrow \infty$, this is a contradiction. Thus $\frac{1}{n} \nrightarrow 0$ as $n \rightarrow \infty$ in the discrete space (\mathbb{R}, d).

Exercises:

1. In the Euclidean space \mathbb{R}, let $\left\langle x_{n}\right\rangle$ and $\left\langle y_{n}\right\rangle$ be two sequences such that $x_{n} \rightarrow p$ and $y_{n} \rightarrow q$ as $n \rightarrow \infty$. Prove that the following:
a. Sum: $\left\langle x_{n}\right\rangle+\left\langle y_{n}\right\rangle$ converges to $p+q$.
b. Difference: $\left\langle x_{n}\right\rangle-\left\langle y_{n}\right\rangle$ converges to $p-q$.
c. Multiplication: $\left\langle x_{n}\right\rangle .\left\langle y_{n}\right\rangle$ converges topq.
d. Multiplication by a scalar: if $\in \mathbb{R}, c\left\langle x_{n}\right\rangle$ converges to $c p$.
2. In the Euclidean space \mathbb{R}, prove that the following :
a. If $0 \leq y_{n} \leq x_{n}$ for all $n \in \mathbb{Z}^{+}$and if $\left\langle x_{n}\right\rangle$ converge to 0 , then $\left\langle y_{n}\right\rangle$ converge to 0 .
b. Let $\left\langle x_{n}\right\rangle$ be decreasing and bounded below. If $T=\left\{x_{n} \mid n \in \mathbb{Z}^{+}\right\}$is the range of $\left\langle x_{n}\right\rangle$, then $\left\langle x_{n}\right\rangle$ is converge to $\operatorname{Inf} T$ (Give an example to explain that).
c. Let $\left\langle x_{n}\right\rangle$ be increasing and bounded above. If $T=\left\{x_{n} \mid n \in \mathbb{Z}^{+}\right\}$is the range of $\left\langle x_{n}\right\rangle$, then $\left\langle x_{n}\right\rangle$ is converge to $\operatorname{Sup} T$ (Give an example to explain that).

Theorem:

In the metric space (M, d), assume that $\left\langle x_{n}\right\rangle$ is a convergent sequence such that $x_{n} \rightarrow p$ and let $T=\left\{x_{1}, x_{2}, \ldots\right\}$ be the range of $\left\{x_{n}\right\}$. Then:
i. T is bounded.
ii. p is an adherent point of T.

Proof(i):

Wanted: T is bounded, i.e. \exists an open ball $B_{M}(p ; r)$ such that $T \subseteq B_{M}(p ; r)$. Let $\epsilon=1$. Since $x_{n} \rightarrow p$ as $n \rightarrow \infty$, hence $\exists N \in \mathbb{Z}^{+} \ni d\left(x_{n}, p\right)<1, \forall n \geq N$ $\Rightarrow x_{n} \in B_{M}(p ; 1) \forall n \geq N \Rightarrow x_{n} \in B_{M}(p ; 1) \forall n \geq N$.

Let $r=1+\operatorname{Max}\left\{d\left(p, x_{1}\right), d\left(p, x_{2}\right), \ldots, d\left(p, x_{N-1}\right)\right\}$.

M331 (Mathematical Analysis(1))

In fact, if $\underline{\boldsymbol{n}} \geq \boldsymbol{N}, d\left(x_{n}, p\right)<1<r \Rightarrow x_{n} \in B_{M}(p ; r)$ and if $\underline{\boldsymbol{n}}<\boldsymbol{N}$, $d\left(x_{n}, p\right) \leq \operatorname{Max}\left\{d\left(p, x_{1}\right), d\left(p, x_{2}\right), \ldots, d\left(p, x_{N-1}\right)\right\}<r \Rightarrow x_{n} \in B_{M}(p ; r)$ for all $n \geq 1 \Rightarrow T \subseteq B_{M}(p ; r)$. Hence T is bounded in M.

Proof(ii):

Wanted: $p \in \bar{T}$ (i.e. wanted: $\left.\forall r>0, B_{M}(p ; r) \cap T \neq \emptyset\right)$.
Let $r>0$. Since $x_{n} \rightarrow p$ as $n \rightarrow \infty \Rightarrow \exists N \in \mathbb{Z}^{+} \ni d\left(x_{n}, p\right)<r, \forall n \geq N$.
$\Rightarrow x_{n} \in B_{M}(p ; r), \forall n \geq N$. But $x_{n} \in T \forall n \geq N \Rightarrow B_{M}(p ; r) \cap T \neq \emptyset \Rightarrow p$ is an adherent point of T.

Remark:

1. If $\left\langle x_{n}\right\rangle$ is a convergent sequence in a metric space M such that $x_{n} \rightarrow p$ and let $T=\left\{x_{1}, x_{2}, \ldots\right\}$ be the range of $\left\langle x_{n}\right\rangle$, the point p may not be an accumulation point of T. For example, in the Euclidean space \mathbb{R}, the sequence $\left\langle x_{n}\right\rangle=\langle 1,1,2,2,2, \ldots\rangle$ is converge and converges to 2 . The range of $\left\langle x_{n}\right\rangle$, $T=\{1,2\}$ is a finite subset of \mathbb{R} which has no accumulation point in \mathbb{R}.Thus, 2 is not an accumulation point of T.
2. If $x_{n} \rightarrow p$ and T is infinite set, then p is an accumulation point of T since every open ball will contain infinitely points of T.

Theorem:

Given a metric space (M, d) and a subset $S \subseteq M$. If a point $p \in M$ is an adherent point of, then there is a sequence $\left\langle x_{n}\right\rangle$ in S which converge to p.

Proof:

Since $p \in M$ is an adherent point of $\Rightarrow \forall r>0 B_{M}(p ; r) \cap S \neq \emptyset$.
Let $=\frac{1}{n}, \mathrm{n}=1,2,3, \ldots \Rightarrow B_{M}(p ; r) \cap S \neq \emptyset \quad \forall n \in \mathbb{Z}^{+}$. Thus, when:
$n=1 \Rightarrow B_{M}(p ; 1) \cap S \neq \emptyset \Rightarrow \exists x_{1} \in B_{M}(p ; 1) \cap S \Rightarrow x_{1} \in S$ and $d\left(x_{1}, p\right)<1$
$n=2 \Rightarrow B_{M}(p ; 2) \cap S \neq \varnothing \Rightarrow \exists x_{2} \in B_{M}(p ; 2) \cap S \Rightarrow x_{2} \in S$ and $d\left(x_{2}, p\right)<\frac{1}{2}$
$n=3 \Rightarrow B_{M}(p ; 3) \cap S \neq \emptyset \Rightarrow \exists x_{3} \in B_{M}(p ; 3) \cap S \Rightarrow x_{3} \in S$ and $d\left(x_{3}, p\right)<\frac{1}{3}$
Therefore, $\forall n \in \mathbb{Z}^{+} \exists$ a point $x_{n} \in S$ with $d\left(x_{n}, p\right)<\frac{1}{n}$. Thus, we have a sequence $\left\langle x_{n}\right\rangle$ in S satisfied $d\left(x_{n}, p\right) \rightarrow 0$ as $n \rightarrow \infty$. Therefore, $x_{n} \rightarrow p$ as $n \rightarrow \infty$.

Definition (Subsequence):

Let $f: \mathbb{Z}^{+} \rightarrow M$ be a sequence $\left\langle x_{n}\right\rangle$ in M, where $f(n)=x_{n}, \forall n \in \mathbb{Z}^{+}$and let $k: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$be an order preserving function, (i.e. $\forall m, n \in \mathbb{Z}^{+}$, if $m<n$, then $k(m)<k(n)$). Then the composition $f \circ k: \mathbb{Z}^{+} \rightarrow M$ which is defined by, $f \circ k(n)=f(k(n))=x_{k(n)}$ is called a subsequence $\left\langle x_{k(n)}\right\rangle$ of $\left\langle x_{n}\right\rangle$.

Example:

Consider the sequence $f=\left\langle\frac{1}{n}\right\rangle$ in \mathbb{R} and let $k: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$be the order preserving function that defined as, $k(n)=2^{n}, \forall n \in \mathbb{Z}^{+}$. Then $f \circ k=\left\langle\frac{1}{2^{n}}\right\rangle$ is a subsequence of $\left\langle\frac{1}{n}\right\rangle$. As well as each of the sequences $\left\langle\frac{1}{2 n}\right\rangle,\left\langle\frac{1}{2 n+1}\right\rangle,\left\langle\frac{1}{3^{n}}\right\rangle$ is a subsequence of $\left\langle\frac{1}{n}\right\rangle$. But the sequence $\left\langle\frac{1}{2}, 1, \frac{1}{4}, \frac{1}{3}, \frac{1}{6}, \frac{1}{5}, \ldots\right\rangle$ is not a subsequence of $\left\langle\frac{1}{n}\right\rangle$.

Exercise: In a metric space ($M d$), prove that a sequence $\left\{x_{n}\right\}$ converges to p if, and only if, every subsequence $\left\langle x_{k(n)}\right\rangle$ converges to p.

Cauchy sequences:

Definition:

A sequence $\left\langle x_{n}\right\rangle$ in a metric space $(M d)$ is called a Cauchy sequence, if it is satisfy the following condition:

$$
\forall \epsilon>0, \exists N \in \mathbb{Z}^{+} \ni d\left(x_{m}, x_{n}\right)<\epsilon, \forall m, n \geq N
$$

Example:

In the Euclidean space \mathbb{R}, the sequence $\left\langle x_{n}\right\rangle=\left\langle\frac{1}{n}\right\rangle$ is a Cauchy sequence.

Sol:

Let $\epsilon>0$. Wanted: $\exists N \in \mathbb{Z}^{+} \ni d\left(x_{n}, x_{m}\right)<\epsilon, \forall m, n \geq N$.
So, assume that there exists such N, satisfied;

$$
\begin{aligned}
& \qquad\left|x_{m}-x_{n}\right|<\epsilon, \forall m, n \geq N \\
& \Rightarrow\left|x_{m}-x_{n}\right|=\left|\frac{1}{m}-\frac{1}{n}\right|=\left|\frac{1}{m}+\left(-\frac{1}{n}\right)\right| \leq\left|\frac{1}{m}\right|+\left|-\frac{1}{n}\right|=\frac{1}{m}+\frac{1}{n} \\
& \Rightarrow\left|x_{m}-x_{n}\right| \leq \frac{1}{m}+\frac{1}{n}
\end{aligned}
$$

Since, $n, m \geq N \Rightarrow \frac{1}{m} \leq \frac{1}{N}$ and $\frac{1}{n} \leq \frac{1}{N}$, hence $\left|x_{m}-x_{n}\right| \leq \frac{1}{N}+\frac{1}{N}=\frac{2}{N}$.
So, if we choose the positive integer $N=\left[\frac{2}{\epsilon}\right]+1$, that satisfied;

$$
N>\frac{2}{\epsilon} \Rightarrow \frac{1}{N}<\frac{\epsilon}{2} \Rightarrow \frac{2}{N}<\epsilon
$$

Therefore, $\left|x_{m}-x_{n}\right| \leq \frac{2}{N}<\epsilon, \forall m, n \geq N$ and $\left\langle x_{n}\right\rangle$ is a Cauchy sequence.

Exercise:

Let (S, d) be a metric subspace of a metric space (M, d). Prove that, a sequence $\left\langle x_{n}\right\rangle$ is a Cauchy sequence in S if, and only if, $\left\langle x_{n}\right\rangle$ is a Cauchy sequence in M.

Theorem:

In a metric space (M, d), every convergent sequence is Cauchy sequence.
Proof: Let $\left\langle x_{n}\right\rangle$ be a convergent sequence in M and $x_{n} \rightarrow p$ with $p \in M$. Wanted: $\left\langle x_{n}\right\rangle$ is a Cauchy sequence in M. Let $\epsilon>0$. Wanted: $\exists N \in \mathbb{Z}^{+} \ni$ $d\left(x_{n}, x_{m}\right)<\epsilon, \forall m, n \geq N$.

Since $\epsilon>0$ and $x_{n} \rightarrow p \quad \Rightarrow \exists N \in \mathbb{Z}^{+} \ni d\left(x_{n}, p\right)<\frac{\epsilon}{2}, \forall n \geq N$. So, if $m \geq N$, then $d\left(x_{m}, p\right)<\frac{\epsilon}{2}$. Now, if $n \geq N$ and $m \geq N$, by the triangle inequality we have:

$$
d\left(x_{n}, x_{m}\right) \leq d\left(x_{n}, p\right)+d\left(x_{m}, p\right)<\frac{\epsilon}{2}+\frac{\epsilon}{2}<\epsilon \Rightarrow d\left(x_{n}, x_{m}\right)<\epsilon
$$

Thus, $\left\langle x_{n}\right\rangle$ is a Cauchy sequence in M.

Example:

The converse of the above theorem needs not to be true in general. For example, the metric subspace $(S=(0,1],||$.$) of the Euclidean metric space$ $(\mathbb{R},|\cdot|)$. The sequence $\left\langle x_{n}\right\rangle=\left\langle\frac{1}{n}\right\rangle$ is a sequence of points in S. We know that, $\left\langle\frac{1}{n}\right\rangle$ is a Cauchy sequence in \mathbb{R}, and $\frac{1}{n} \rightarrow 0$. Thus, $\left\langle\frac{1}{n}\right\rangle$ is a Cauchy sequence in S, while it is diverge in S since $0 \notin S$.

Complete metric space:

Definition:

A metric space (M, d) is called complete, if every Cauchy sequence in M is converge in M. A subset S of M is called complete metric subspace of (M, d), if S is complete as a metric space.

Example:

The Euclidean space \mathbb{R}^{k} is complete, $(k \geq 1)$.
Proof: Let $\left\langle x_{n}\right\rangle$ be a Cauchy sequence in \mathbb{R}^{k}. Wanted, $\left\langle x_{n}\right\rangle$ is a convergent sequence in \mathbb{R}^{k}. Wanted: $\exists p \in \mathbb{R}^{k} \ni x_{n} \rightarrow p$.

Let $T=\left\{x_{n}: n \in \mathbb{Z}^{+}\right\}$be the range of the sequence $\left\langle x_{n}\right\rangle$. There are two cases to be discussed:

The first one, if T is finite, then all except a finite number of the terms of the sequence $\left\langle x_{n}\right\rangle$ are equal and hence $\left\langle x_{n}\right\rangle$ is converge to this common value. This show that \mathbb{R}^{k} is complete in this case.

The second one, if T is infinite. We will use the Bolzano-Weierstrass theorem to show that T has an accumulation point $p \in \mathbb{R}^{k}$, and then we show that $x_{n} \rightarrow p$. To do this, we need first to show T is bounded set in \mathbb{R}^{k}.
So, let $\epsilon=1$. Since $\left\langle x_{n}\right\rangle$ is a Cauchy sequence in \mathbb{R}^{k}, hence;

$$
\exists N \in \mathbb{Z}^{+} \ni \quad\left\|x_{n}-x_{m}\right\|<1, \forall n, m \geq N .
$$

Thus, if $n \geq N$ we have $\left\|x_{n}-x_{N}\right\|<1$. Let;

$$
r^{\prime}=\operatorname{Max}\left\{\left\|x_{1}\right\|,\left\|x_{2}\right\|, \ldots,\left\|x_{N}\right\|\right\} \text { and } r=1+r^{\prime}
$$

However, if $1 \leq n \leq N$, we have $d\left(x_{n}, 0\right)=\left\|x_{n}\right\| \leq r^{\prime}<r$. As well as, if $n>N$, we have $d\left(x_{n}, 0\right)=\left\|x_{n}\right\| \leq\left\|x_{n}-x_{N}\right\|+\left\|x_{N}\right\|<1+r^{\prime}=r$. That is;

$$
x_{n} \in B(0 ; r) \forall n \in \mathbb{Z}^{+} \Rightarrow T \subseteq B(0 ; r) .
$$

Therefore, T is bounded set in \mathbb{R}^{k}.
Now, in our second case T is infinite and bounded, so from Bolzano-weierstrass theorem, T has an accumulation point say, $p \in \mathbb{R}^{k}$. We need only to show that, $x_{n} \rightarrow p$.
Let $\epsilon>0$. Wanted: $\exists N \in \mathbb{Z}^{+} \ni\left\|x_{n}-p\right\|<\epsilon, \forall n \geq N$.
Since $\epsilon>0$ and $\left\langle x_{n}\right\rangle$ is a Cauchy sequence in \mathbb{R}^{k}, hence;

$$
\exists N \in \mathbb{Z}^{+} \ni\left\|x_{n}-x_{m}\right\|<\frac{\epsilon}{2}, \forall n, m \geq N
$$

Since p is an accumulation point of T, hence $B\left(p ; \frac{\epsilon}{2}\right)$ contains infinitely many points of T and there is at least a point x_{m} with $m \geq N$ such that $x_{m} \in B\left(p ; \frac{\epsilon}{2}\right)$, i.e. $\left\|x_{m}-p\right\|<\frac{\epsilon}{2}$. By the triangle inequality, for $n \geq N$, we have;

$$
\left\|x_{n}-p\right\| \leq\left\|x_{n}-x_{m}\right\|+\left\|x_{m}-p\right\|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon \Rightarrow\left\|x_{n}-p\right\|<\epsilon .
$$

Therefore, $x_{n} \rightarrow p$ and \mathbb{R}^{k} is complete.

Example:

For $n \geq 1$, The space $\left(\mathbb{R}^{n}, d\right)$ with the metric $d: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ that defined as;

$$
d(x, y)=\operatorname{Max}\left\{\left|x_{1}-y_{1}\right|,\left|x_{2}-y_{2}\right|, \ldots,\left|x_{n}-y_{n}\right|\right\} ;
$$

for $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right), y=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$, is a complete metric space.

Proof: Let $\left\langle x_{m}\right\rangle$ be a Cauchy sequence in \mathbb{R}^{n} with respect to the metric d. Wanted: $\exists p \in \mathbb{R}^{n} \ni x_{m} \rightarrow p$ with respect to the metric d.
Let $\epsilon>0$. Since $\left\langle x_{m}\right\rangle$ be a Cauchy sequence in \mathbb{R}^{n} with respect to the metric $d \Rightarrow \exists N \in \mathbb{Z}^{+} \ni d\left(x_{m}, x_{r}\right)<\epsilon, \forall m, r \geq N$, where $x_{m}=\left(x_{m}^{1}, x_{m}^{2}, \ldots, x_{m}^{n}\right)$, $x_{r}=\left(x_{r}^{1}, x_{r}^{2}, \ldots, x_{r}^{n}\right) \in \mathbb{R}^{n}$.
Since, for $m, r \geq N, d\left(x_{m}, x_{r}\right)<\epsilon$;
$\Rightarrow \operatorname{Max}\left\{\left|x_{m}^{1}-x_{r}^{1}\right|,\left|x_{m}^{2}-x_{r}^{2}\right|, \ldots,\left|x_{m}^{n}-x_{r}^{n}\right|\right\}<\epsilon$
$\Rightarrow\left|x_{m}^{1}-x_{r}^{1}\right|<\epsilon,\left|x_{m}^{2}-x_{r}^{2}\right|<\epsilon, \ldots,\left|x_{m}^{n}-x_{r}^{n}\right|<\epsilon$
$\Rightarrow\left\langle x_{m}^{1}\right\rangle,\left\langle x_{m}^{2}\right\rangle, \ldots,\left\langle x_{m}^{n}\right\rangle$ are Cauchy sequences in \mathbb{R} with respect to the Euclidean metric $||:. \mathbb{R} \rightarrow \mathbb{R}$. But the Euclidean metric $(\mathbb{R},|\cdot|)$ is complete (see the above example). Thus, there are $p_{1}, p_{2}, \ldots, p_{n} \in \mathbb{R}$ such that $x_{m}^{1} \rightarrow p_{1}$, $x_{m}^{2} \rightarrow p_{2}, \ldots, x_{m}^{n} \rightarrow p_{n}$. Put $p=\left(p_{1}, p_{2}, \ldots, p_{n}\right) \in \mathbb{R}^{n}$. As an exercise, show that

$$
x_{m}=\left(x_{m}^{1}, x_{m}^{2}, \ldots, x_{m}^{n}\right) \rightarrow\left(p_{1}, p_{2}, \ldots, p_{n}\right)=p \Rightarrow x_{m} \rightarrow p \text { in }\left(\mathbb{R}^{n}, d\right) .
$$

Hence, $\left(\mathbb{R}^{n}, d\right)$ is complete.

Continuous functions:

Definition:

Let $\left(S, d_{s}\right)$ and $\left(T, d_{T}\right)$ be metric spaces and $f: S \rightarrow T$ be a function. The function f is said to be continuous at a point $p \in S$ if,

$$
\begin{aligned}
& \forall \epsilon>0, \exists \delta>0 \text { (depend on } \epsilon \text { and } p) \ni \\
& \qquad d_{S}(x, p)<\delta \Rightarrow d_{T}(f(x), f(p))<\epsilon .
\end{aligned}
$$

Or equivalently: $\forall \epsilon>0, \exists \delta>0$ such that $f\left(B_{S}(p ; \delta)\right) \subseteq B_{T}(f(p) ; \epsilon)$.
We say that, f is continuous on a set $A \subseteq S$ if, f is continuous at every point of A.

Remark:

If p is an isolated point of S, i.e. $p \notin S^{\prime} \cap S$, then every function $f: S \rightarrow T$ defined at p will be continuous at p. To explain that: let $\epsilon>0$. Since $p \notin S^{\prime} \cap S$, hence $\quad \exists \delta>0 \ni B_{S}(p ; \delta) \cap S-\{p\}=\emptyset \Rightarrow B_{S}(p ; \delta) \cap S=\{p\}$. Thus, $B_{S}(p ; \delta)=\{p\}$. In fact, $f(p) \in B_{T}(f(p) ; \epsilon)$, so;

$$
f\left(B_{S}(p ; \delta)\right)=f(\{p\})=\{f(p)\} \subseteq B_{T}(f(p) ; \epsilon)
$$

Therefore, f is continuous at p.

Theorem:

Let $f: S \rightarrow T$ be a function from a metric space $\left(S, d_{S}\right)$ to another metric space (T, d_{T}), and assume that $p \in S$. Then f is continuous at $p \in S$ if, and only if, for every sequence $\left\langle x_{n}\right\rangle$ in S converges to p, the sequence $\left\langle f\left(x_{n}\right)\right\rangle$ in T converges to $f(p)$, i.e. $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f\left(\lim _{n \rightarrow \infty} x_{n}\right)$.

Proof:

Suppose that f is continuous at $p \in S$ and let $\left\langle x_{n}\right\rangle$ be a sequence in S converges to p. Wanted: the sequence $\left\langle f\left(x_{n}\right)\right\rangle$ converges to $f(p)$.
Let $\epsilon>0$. Wanted: $\exists N \in \mathbb{Z}^{+} \ni d_{T}\left(f\left(x_{n}\right), f(p)\right)<\epsilon, \forall n \geq N$.
Since $f: S \rightarrow T$ is continuous at $p \in S \Rightarrow \exists \delta>0$ such that if $x \in S$ with,

$$
\begin{equation*}
d_{S}(x, p)<\delta \Rightarrow d_{T}(f(x), f(p))<\epsilon \tag{1}
\end{equation*}
$$

Since $\delta>0$ and $x_{n} \rightarrow p$ in $\Rightarrow \exists N \in \mathbb{Z}^{+} \ni d_{s}\left(x_{n}, p\right)<\delta, \forall n \geq N$. From (1) above, $d_{T}\left(f\left(x_{n}\right), f(p)\right)<\epsilon, \forall n \geq N$. Therefore, $\left\langle f\left(x_{n}\right)\right\rangle$ in T converges to $f(p)$.
Conversely, suppose that for every sequence $\left\langle x_{n}\right\rangle$ in S converges to p, the sequence $\left\langle f\left(x_{n}\right)\right\rangle$ in T converges to $f(p)$. Wanted: f is continuous at $\in S$. By contrary, suppose that f is not continuous at $p \in S \Rightarrow \exists \epsilon>0$ such that $\forall \delta>0, \exists x \in S$ such that;

$$
d_{s}(x, p)<\delta \text { and } d_{T}(f(x), f(p)) \geq \epsilon
$$

Let $\delta=\frac{1}{n}, n \in \mathbb{Z}^{+}$. So;

$$
\begin{aligned}
& \text { if } n=1 \Rightarrow \delta=1, \exists x_{1} \in S \ni d_{S}\left(x_{1}, p\right)<1 \text { and } d_{T}\left(f\left(x_{1}\right), f(p)\right) \geq \epsilon ; \\
& \text { if } n=2 \Rightarrow \delta=\frac{1}{2}, \exists x_{2} \in S \ni d_{S}\left(x_{2}, p\right)<\frac{1}{2} \text { and } d_{T}\left(f\left(x_{2}\right), f(p)\right) \geq \epsilon ; \\
& \text { if } n \in \mathbb{Z}^{+} \Rightarrow \delta=\frac{1}{n}, \exists x_{n} \in S \ni d_{s}\left(x_{n}, p\right)<\frac{1}{n} \text { and } d_{T}\left(f\left(x_{n}\right), f(p)\right) \geq \epsilon
\end{aligned}
$$

Therefore, we will obtain a sequence $\left\langle x_{n}\right\rangle$ in S such that;

$$
d_{s}\left(x_{n}, p\right)<\frac{1}{n}, \text { but } d_{T}\left(f\left(x_{n}\right), f(p)\right) \geq \epsilon .
$$

That means, $\left\langle x_{n}\right\rangle$ is sequence in S converges to $p \in S$, but the sequence $\left\langle f\left(x_{n}\right)\right\rangle$ in T is not converges to $f(p)$ and this is a contradiction. Thus, $f: S \rightarrow T$ is continuous at $p \in S$.

Theorem:

Let $\left(S, d_{S}\right),\left(T, d_{T}\right)$ and $\left(U, d_{U}\right)$ be metric spaces. Let $f: S \rightarrow T$ and $g: T \rightarrow U$ be functions, and let $g \circ f: S \rightarrow U$ be the composite function defined on S by;

$$
g \circ f(x)=g(f(x)), \text { for } x \in S
$$

If f is continuous at $p \in S$ and g is continuous at $f(p) \in T$, then $g \circ f$ is continuous at p.

Proof: Let $\epsilon>0$. Wanted: $g \circ f$ is continuous at $p \in S$, i.e. wanted, $\exists \delta>0$ such that;

$$
d_{S}(x, p)<\delta \Rightarrow d_{U}(g(f(x)), g(f(p)))<\epsilon
$$

Since $\epsilon>0$ and $g: T \rightarrow U$ is continuous at $f(p) \Rightarrow \exists \delta_{1}>0 \ni$

$$
\begin{equation*}
d_{T}(y, f(p))<\delta_{1} \Rightarrow d_{U}(g(y), g(f(p)))<\epsilon \tag{1}
\end{equation*}
$$

Since $\delta_{1}>0$ and $f: S \rightarrow T$ is continuous at $p \Rightarrow \exists \delta>0 \ni$;

$$
\begin{equation*}
d_{S}(x, p)<\delta \Rightarrow d_{T}(f(x), f(p))<\delta_{1} \tag{2}
\end{equation*}
$$

Form (1) and (2) above we have;

$$
d_{S}(x, p)<\delta \Rightarrow d_{T}(f(x), f(p))<\delta_{1} \Rightarrow d_{U}(g(f(x)), g(f(p)))<\epsilon
$$

Therefore, $g \circ f$ is continuous at $p \in S$.

Remark:

Let $f: X \rightarrow Y$ be a function from a set X into a set Y and let $A \subseteq X, B \subseteq Y$. Then:

1. $f(A)=\{y \in Y \mid y=f(x), x \in A\}=\{f(x) \in Y \mid x \in A\}$
2. $f^{-1}(B)=\{x \in X \mid f(x) \in B\}$
3. $f^{-1} f(A) \supseteq A$ and $f^{-1} f(A)=A \Leftrightarrow f$ is onto.
4. $f f^{-1}(B) \subseteq B$ and $f f^{-1}(B)=B \Leftrightarrow f$ is one-to-one.

Theorem:

Let $\left(S, d_{S}\right)$ and $\left(T, d_{T}\right)$ be metric spaces and let $f: S \rightarrow T$ be a function. Then:

1. f is continuous on S if, and only if, $f^{-1}(B)$ is an open set in S for every open set B in T.
2. f is continuous on in S if, and only if, $f^{-1}(B)$ is a closed set in S for every closed set B on T.

Proof:

For (1): Suppose that f is continuous on S and let B be an open set in T. Wanted: $f^{-1}(B)$ is an open set in S, i.e. wanted: each point in $f^{-1}(B)$ is an interior point of $f^{-1}(B)$.

Let $p \in f^{-1}(B)$. Wanted: $\exists \delta>0 \ni B_{S}(p ; \delta) \subseteq f^{-1}(B)$.
Since $p \in f^{-1}(B) \Rightarrow f(p) \in B$. But B is open set in $T \Rightarrow f(p)$ is an interior point of $B \Rightarrow \exists \epsilon>0 \ni B_{T}(f(p) ; \epsilon) \subseteq B \ldots(*)$

Since $\epsilon>0$ and $f: S \rightarrow T$ is continuous at $\in S \Rightarrow \exists \delta>0$, such that;

$$
\begin{gathered}
f\left(B_{S}(p ; \delta)\right) \subseteq B_{T}(f(p) ; \epsilon) \\
\Rightarrow f^{-1} f\left(B_{S}(p ; \delta)\right) \subseteq f^{-1}\left(B_{T}(f(p) ; \epsilon)\right)
\end{gathered}
$$

But $B_{S}(p ; \delta) \subseteq f^{-1} f\left(B_{S}(p ; \delta)\right) \Rightarrow B_{S}(p ; \delta) \subseteq f^{-1}\left(B_{T}(f(p) ; \epsilon)\right) \ldots(* 2)$
From (*) we have, $f^{-1}\left(B_{T}(f(p) ; \epsilon)\right) \subseteq f^{-1}(B) \ldots(* 3)$
From (*2) and (*3), we have $B_{S}(p ; \delta) \subseteq f^{-1}(B)$. Thus, $f^{-1}(B)$ is an open set in S.

Conversely, assume that $f^{-1}(B)$ is open in S, for every open set B in T. Wanted: f is continuous on S.

Let $p \in S$. Wanted: f is continuous at $p \in S$. Let $\epsilon>0$. Wanted:

$$
\exists \delta>0 \ni f\left(B_{S}(p ; \delta)\right) \subseteq B_{T}(f(p) ; \epsilon) .
$$

Since $B_{T}(f(p) ; \epsilon)$ is open set in T containing $f(p)$, hence $f^{-1}\left(B_{T}(f(p) ; \epsilon)\right)$ is open set in S containing p, i.e. $p \in f^{-1}\left(B_{T}(f(p) ; \epsilon)\right) \Rightarrow p$ is an interior point of $f^{-1}\left(B_{T}(f(p) ; \epsilon)\right) \Rightarrow \exists \delta>0 \ni B_{S}(p ; \delta) \subseteq f^{-1}\left(B_{T}(f(p) ; \epsilon)\right) ;$

$$
\Rightarrow \exists \delta>0 \ni f\left(B_{S}(p ; \delta)\right) \subseteq f f^{-1}\left(B_{T}(f(p) ; \epsilon)\right)
$$

But, $f f^{-1}\left(B_{T}(f(p) ; \epsilon)\right) \subseteq B_{T}(f(p) ; \epsilon) \Rightarrow f\left(B_{S}(p ; \delta)\right) \subseteq B_{T}(f(p) ; \epsilon)$. Thus f is continuous at p.

For (2): Suppose f is continuous on S and let B be a closed set in T. Wanted: $f^{-1}(B)$ is a closed set in S, i.e. wanted: $S-f^{-1}(B)$ is an open set in S.

Since B is closed in $T \Rightarrow T-B$ is open in T. But f is continuous on $S \Rightarrow$ from part (1) above, $f^{-1}(T-B)$ is an open set in S. Since;

$$
f^{-1}(T-B)=f^{-1}(T)-f^{-1}(B)=S-f^{-1}(B)
$$

$\Rightarrow S-f^{-1}(B)$ is an open set in $S \Rightarrow f^{-1}(B)$ is a closed set in S.
Conversely, assume $f^{-1}(B)$ is closed in S for closed set B in T. Wanted: f is continuous on S.

Let A be an open set in T. Wanted: $f^{-1}(A)$ is open in S, (i.e. we will use part (1) above to show our aim). Since A is open in $T \Rightarrow T-A$ is closed in $T \Rightarrow$ $f^{-1}(T-A)$ is closed in S, (this implies from our assumption). Since;

$$
\begin{aligned}
f^{-1}(T-A)=S-f^{-1}(A) & \Rightarrow S-f^{-1}(A) \text { is closed in } S \\
& \Rightarrow S-\left(S-f^{-1}(A)\right) \text { is open in } S
\end{aligned}
$$

But $S-\left(S-f^{-1}(A)\right)=f^{-1}(A) \Rightarrow f^{-1}(A)$ is open in S. Thus, f is continuous on S.

Theorem:

Let $f: S \rightarrow T$ be a continuous function from a metric space $\left(S, d_{S}\right)$ into a metric space $\left(T, d_{T}\right)$. If X is a compact subset of S, then $f(X)$ is compact subset of T, in particular $f(X)$ is closed and bounded.

Proof: Let $\left\{G_{i} \mid i \in I\right\}$ be an open covering of $f(X)$, i.e. $f(X) \subseteq \cup_{i \in I} G_{i}$, where G_{i} is open in $T, \forall i \in I$. Wanted: $\left\{G_{i} \mid i \in I\right\}$ contains a finite subcover of $f(X)$. According, $f(X) \subseteq \mathrm{U}_{i \in I} G_{i}$, we have $f^{-1}(f(X)) \subseteq f^{-1}\left(\mathrm{U}_{i \in I} G_{i}\right)$.

Since, $X \subseteq f^{-1} f(X)$ and $f^{-1}\left(\cup_{i \in I} G_{i}\right)=\cup_{i \in I} f^{-1}\left(G_{i}\right)$, hence $X \subseteq \cup_{i \in I} f^{-1}\left(G_{i}\right)$. But G_{i} is open in T and f is continuous on S, therefore $f^{-1}\left(G_{i}\right)$ is open in S, $\forall i \in I \Rightarrow\left\{f^{-1}\left(G_{i}\right) \mid i \in I\right\}$ froms an open covering of X. But X is compact in S
$\Rightarrow \exists$ a finite subcover of $\left\{f^{-1}\left(G_{i}\right) \mid i \in I\right\}$ for X say $\left\{f^{-1}\left(G_{1}\right), \ldots, f^{-1}\left(G_{n}\right)\right\}$, i.e. $X \subseteq \cup_{i=1}^{n} f^{-1}\left(G_{i}\right) \Rightarrow f(X) \subseteq f\left(\cup_{i=1}^{n} f^{-1}\left(G_{i}\right)\right)=\cup_{i=1}^{n} f f^{-1}\left(G_{i}\right)$.
But $f f^{-1}\left(G_{i}\right) \subseteq G_{i}$, so $\cup_{i=1}^{n} f f^{-1}\left(G_{i}\right) \subseteq \cup_{i=1}^{n} G_{i} \Rightarrow f(X) \subseteq \cup_{i=1}^{n} G_{i}$.
$\Rightarrow\left\{G_{i}: i=1, \ldots, n\right\}$ forms a finite subcover of $\left\{G_{i} \mid i \in I\right\}$ for $f(X)$. Hence, $f(X)$ is compact in T and from a previous result, we implies that $f(X)$ is closed and bounded in T.

Complex valued functions and vector valued functions:

Definition:

Let $\left(S, d_{S}\right)$ be a metric space and let $f: S \rightarrow \mathbb{C}$ and $g: S \rightarrow \mathbb{C}$ be complex valued functions. The sum $+g: S \rightarrow \mathbb{C}$, the difference $f-g: S \rightarrow \mathbb{C}$, the product $f . g: S \rightarrow \mathbb{C}$ and the quotient $f / g: S \rightarrow \mathbb{C}$ are defined respectively by:

1. $f \pm g(x)=f(x) \pm g(x), \forall x \in S$.
2. $f \cdot g(x)=f(x) \cdot g(x), \forall x \in S$.
3. $f / g(x)=f(x) / g(x), \forall x \in S$ such that $g(x) \neq 0$.

Exercise:

Let $\left(S, d_{S}\right)$ be a metric space and let $f: S \rightarrow \mathbb{C}$ and $g: S \rightarrow \mathbb{C}$ be complex valued functions. If f and g are continuous at $p \in S$, prove that;

$$
f+g, f-g, f . g: S \rightarrow \mathbb{C} \text { are continuous functions at } p .
$$

Definition:

Let $\left(S, d_{S}\right)$ be a metric space and let $f: S \rightarrow \mathbb{R}^{n}$ and $g: S \rightarrow \mathbb{R}^{n}$ be vector valued functions. The sum $f+g: S \rightarrow \mathbb{R}^{n}$, the scalar product $\alpha . f: S \rightarrow \mathbb{R}^{n}$, where $\alpha \in \mathbb{R}$, the inner (or dot) product $f . g: S \rightarrow \mathbb{R}^{n}$ and the norm $\|f\|: S \rightarrow \mathbb{R}$ are defined respectively by:

1. $f+g(x)=f(x)+g(x), \forall x \in S$.
2. $\alpha \cdot f(x)=\alpha \cdot f(x), \forall x \in S$.
3. $f \cdot g(x)=f(x) \cdot g(x), \forall x \in S$.

4. $\|f\|(x)=\|f(x)\|, \forall x \in S$.

Exercises:

1. Let $\left(S, d_{S}\right)$ be a metric space and let $f: S \rightarrow \mathbb{R}^{n}$ and $g: S \rightarrow \mathbb{R}^{n}$ be vector valued functions. If f and g are continuous at $p \in S$ and $\alpha \in \mathbb{R}$, prove that;

$$
f+g, \alpha . f, f . g,\|f\|: S \rightarrow \mathbb{R}^{n} \text { are continuous functions at } p .
$$

2. Let $\left(S, d_{S}\right)$ be a metric space and let $f: S \rightarrow \mathbb{R}^{n}$ be a vector valued function defined by, $f(x)=\left(f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right)$, for $x \in S$. Prove that, f is continuous at $p \in S$ if, and only if, $f_{i}: S \rightarrow \mathbb{R}$ is continuous at p, for all $i=1,2, \ldots, n$.

Bounded functions:

Definition:

A function $f: S \rightarrow \mathbb{R}^{n}$ from a metric space $\left(S, d_{S}\right)$ into the Euclidean space $\left(\mathbb{R}^{n},\|\cdot\|\right)$, is called bounded on S, if there exists a positive real number $M>0$, such that;

$$
\|f(x)\| \leq M, \forall x \in S .
$$

Or equivalently: f is bounded if, and only if, $f(S)$ is bounded subset of \mathbb{R}^{n}.

Theorem:

Let $f: S \rightarrow \mathbb{R}^{n}$ be a function from a metric space $\left(S, d_{S}\right)$ into the Euclidean space $\left(\mathbb{R}^{n},\|\|.\right)$. If f is continuous on a compact subset X of S, then f is bounded.

Proof: Since f is continuous on X and X is compact, then $f(X)$ is compact as a metric subspace of \mathbb{R}^{n}. So, $f(X)$ is compact subset of \mathbb{R}^{n} and as an application of a previous result $f(X)$ is closed and bounded. Therefore, f is bounded.

Remark:

If $f: S \rightarrow \mathbb{R}$ is a real valued function which is bounded on $X \subseteq S$, then $f(X)$ is bounded of $\mathbb{R} \Rightarrow f(X)$ is b is bounded above bounded above and bounded below $\Rightarrow f(X)$ has $\operatorname{Sup}(f(X))$ and $\operatorname{Inf}(f(X)) \Rightarrow$

$$
\operatorname{Sup}(f(X)) \leq f(x) \leq \operatorname{Inf}(f(X)), \forall x \in X .
$$

Exercise:

Let $f: S \rightarrow \mathbb{R}$ be a real valued function from a metric space $\left(S, d_{S}\right)$ into the Euclidean space $(\mathbb{R},||$.$) . Prove that, if f$ is continuous on a compact subset of S, then there exist two points $p, q \in X$ such that;

$$
f(p)=\operatorname{Inf}(f(X)) \text { and } f(q)=\operatorname{Sup}(f(X))
$$

Theorem:

Let f be defined on an interval S of \mathbb{R}. Assume that, f is continuous at a point c in S and that $f(c) \neq 0$. Then, there is an open ball $B(c ; \delta)$ such that $f(x)$ has the same sign as $f(c)$ in $B(c ; \delta) \cap S$.

Proof:

Suppose that $f(c)>0$. Let $\epsilon=\frac{1}{2} f(c) \Rightarrow \epsilon>0$.
Since $\epsilon>0$ and f is continuous at $c \in S \Rightarrow \exists \delta>0$ such that if $x \in S$ and;

$$
|x-c|<\delta \Rightarrow|f(x)-f(c)|<\epsilon
$$

Therefore, if $x \in B(c ; \delta) \Rightarrow-\epsilon<f(x)-f(c)<\epsilon$
$\Rightarrow f(c)-\epsilon<f(x)<f(c)+\epsilon ;$
$\Rightarrow f(c)-\frac{1}{2} f(c)<f(x)<f(c)+\frac{1}{2} f(c) ;$
$\Rightarrow 0<\frac{1}{2} f(c)<f(x)<\frac{3}{2} f(c)$, since $f(c)>0 ;$
$\Rightarrow f(x)>0$.
Therefore, $f(x)$ has the same sign as $f(c)$ in $B(c ; \delta) \cap S$. The proof is similar if $(c)<0$, except that we take in this case $\epsilon=-\frac{1}{2} f(c)$.

Theorem (Bolzano's theorem for continuous functions):

Let f be a real-valued and continuous function on a compact interval $[a, b]$ in \mathbb{R}, and suppose that $f(a)$ and $f(b)$ have opposite signs, i.e. $f(a) f(b)<0$. Then, there is at least one point $c \in(a, b)$ such that $f(c)=0$.

Proof:

For definiteness, assume that $f(a)>0$ and $f(b)<0$. Let;

$$
A=\{x \mid x \in[a, b] \text { and } f(x) \geq 0\}
$$

Since $a \in[a, b]$ and $f(a)>0 \Rightarrow a \in A \Rightarrow A \neq \emptyset$. Since, $A \subseteq[a, b] \Rightarrow x \leq b$, $\forall x \in A \Rightarrow b$ is an upper bound of $A \Rightarrow \operatorname{Sup} A$ exists. Let $c=\operatorname{Sup} A$.

Since $f(b)<0 \Rightarrow b \notin A$ and from the above theorem, there is an open ball $B(b ; r)$ such that $f(x)$ has the same sign as $f(b)$ in $B(b ; r) \cap[a, b]$.
$\Rightarrow f\left(b-\frac{r}{2}\right)<0 \Rightarrow b-\frac{r}{2} \notin A$ and it is also an upper bound of A.
$\Rightarrow c=\operatorname{Sup} A<b$, since $b-\frac{r}{2}$ is an upper bound of A with $b-\frac{r}{2}<b$.
$\Rightarrow a<c($ since $a \in A)$ and $c<b$.
$\Rightarrow a<c<b \quad \Rightarrow c \in(a, b)$. We will show that, $f(c)=0$.

If $f(c) \neq 0$, then from the above result, there is an open ball $B(c ; \delta)$ such that $f(x)$ has the same sign as $f(c)$ in $B(c ; \delta) \cap[a, b]$.

If $f(c)>0$, then there are points $x \in A$ such that $x>c$ at which $f(x)>0$ and this is a contradiction since $c=\operatorname{Sup} A$.

If $f(c)<0$, then $\quad c-\frac{\delta}{2}$ is an upper bound for A since $f\left(c-\frac{\delta}{2}\right)<0$. But $c=\operatorname{Sup} A$, hence $c<c-\frac{\delta}{2}$ (contradiction).

Thus, there is at least a point $c \in(a, b)$. Such that $f(c)=0$.

Uniform continuity:

Remark:

Firstly, let us recall the definition of continuity:
Let $f: S \rightarrow T$ be a function from a metric space $\left(S, d_{S}\right)$ into a metric space (T, d_{T}) and let $A \subseteq S$. Then, f is called continuous on A if, the following condition is hold:
$\forall p \in A$ and $\forall \epsilon>0 \exists a \delta>0$ (depending on p and on ϵ) such that if $x \in A$

$$
\text { and } d_{S}(x, p)<\delta \Rightarrow d_{T}(f(x), f(p))<\epsilon
$$

In general, we cannot expect that for a fixed $\epsilon>0$ the same $\delta>0$ will serve for every point p in .

Definition (Uniform continuity):

Let $f: S \rightarrow T$ be a function from a metric space $\left(S, d_{S}\right)$, into a metric space $\left(T, d_{T}\right)$. Then f is said to be uniformly continuous on a subset A of S, if the following condition holds:
$\forall \epsilon>0 \exists a \delta>0$ (depending on ϵ), such that if $x, y \in A$ and,

$$
d_{S}(x, y)<\delta \Rightarrow d_{T}(f(x), f(y))<\epsilon
$$

Theorem:

Let $f: S \rightarrow T$ be a function from a metric space $\left(S, d_{S}\right)$, into a metric space (T, d_{T}). If f is uniformly continuous on S, then f is continuous on S. But the converse needs not to be true in general.

Proof:

Suppose f is uniformly continuous on S. Wanted: f is continuous on S. Let $\epsilon>0$ and $p \in S$, wanted: $\exists a \delta>0$ (depending on p and on ϵ) such that if $x \in S$ and $d_{S}(x, p)<\delta \Rightarrow d_{T}(f(x), f(p))<\epsilon$.

Since $\epsilon>0$ and $\exists a \delta>0$ (depending on ϵ) such that if $x, y \in S$ and $d_{S}(x, y)<\delta \Rightarrow d_{T}(f(x), f(y))<\epsilon \ldots(*)$. Thus, if we take $y=p$, then $(*)$ becomes, if $x \in S$ and $d_{S}(x, p)<\delta \Rightarrow d_{T}(f(x), f(p))<\epsilon \Rightarrow f$ is continuous at $p \in S \Longrightarrow f$ is continuous on S.

Example:

Let f be real-valued function define on \mathbb{R} by $f(x)=x^{2}, \forall x \in \mathbb{R}$. We will show that f is continuous on \mathbb{R} and f is not uniformly continuous on \mathbb{R} :

For \boldsymbol{f} is continuous on \mathbb{R} : Let $p \in \mathbb{R}$. Wanted: f is continuous at p. Let $\epsilon>0$.
Wanted: \exists a $0<\delta \leq 1$ such that if;

$$
|x-c|<\delta \Rightarrow|f(x)-f(p)|<\epsilon
$$

As we know, $|f(x)-f(p)|=\left|x^{2}-p^{2}\right|=|(x-p)(x+p)|$

$$
=|x-p||x+p|
$$

If we suppose, $|x-p|<\delta \Rightarrow|f(x)-f(p)|<\delta|x+p|$

$$
\Rightarrow|f(x)-f(p)|<\delta(|x|+|p|) \ldots(* 1)
$$

Since $\delta<1 \Rightarrow|x-p|<1$. But $||x|-|p|| \leq|x-p|$

$$
\Rightarrow||x|-|p||<1 \Rightarrow-1<|x|-|p|<1
$$

From $|x|-|p|<1 \Rightarrow|x|<|p|+1 \ldots(* 2)$
From (*1) and (*2) we have,

$$
\begin{gathered}
\Rightarrow|f(x)-f(p)|<\delta(1+|p|+|p|)=\delta(1+2|p|) \\
\Rightarrow|f(x)-f(p)|<\delta(1+2|p|)
\end{gathered}
$$

So we can choose $\delta=\operatorname{Min}\left\{\frac{\epsilon}{(1+2|p|)}, 1\right\}$.
Therefore $|x-p|<\delta \Rightarrow|f(x)-f(p)|=\left|x^{2}-p^{2}\right|=|(x-p)(x+p)|$

$$
\begin{gathered}
=|(x-p)||(x+p)|<\delta|(x+p)| \leq \delta(|x|+|p|)<\delta(1+|p|+|p|) \\
=\delta(1+2|p|) \\
\Rightarrow|f(x)-f(p)|<\delta(1+2|p|) \ldots(*)
\end{gathered}
$$

Now, if $=1 \Rightarrow \delta<\frac{\epsilon}{(1+2|p|)}$.
Therefore from (${ }^{*}$) $\Rightarrow|f(x)-f(p)|<\frac{\epsilon}{(1+2|p|} \cdot\left(\frac{\epsilon}{(1+2|p|}\right)=\epsilon$.
And, if $\delta=\frac{\epsilon}{(1+2|p|)}$ from $\left(^{*}\right) \Rightarrow|f(x)-f(p)|<\epsilon$.
Therefore, f is continuous at $p \in \mathbb{R} \Rightarrow f$ is continuous on \mathbb{R}.

Exercises

(1): Prove that $f(x)=x^{2}$ is not uniformly continuous on \mathbb{R}.
(2): Prove that $f(x)=x^{2}$ is uniformly continuous on $A=(0,1]$.

Proof(1):

We need to prove, $f(x)=x^{2}$ is not uniformly continuous on \mathbb{R}, i.e.
wanted: $\exists p \in A$ and $\exists \epsilon>0, \forall \delta>0$ if $x, y \in A$ and,

$$
|x-y|<\delta \text { but }|f(x)-f(p)|>\epsilon \ldots(*) .
$$

Let $\epsilon=1$, and suppose we could find a $\delta>0$ to satisfy the condition of
(*). Taking $x=\frac{1}{\delta}$ and $y=\frac{1}{\delta}+\frac{\delta}{2}$, then;

$$
|x-p|=\left|\frac{1}{\delta}-\left(\frac{1}{\delta}+\frac{\delta}{2}\right)\right|=\frac{1}{\delta}+\frac{\delta}{2}<\delta .
$$

But $|f(x)-f(p)|=\left|\left(\frac{1}{\delta}\right)^{2}-\left(\frac{1}{\delta}+\frac{\delta}{2}\right)^{2}\right|=\left|-\left(\frac{1}{\delta}\right)^{2}-1\right|=\left(\frac{1}{\delta}\right)^{2}+1>1$.

$$
\Rightarrow|f(x)-f(y)|<\epsilon
$$

Thus, $f(x)=x^{2}$ is not uniformly continuous on \mathbb{R}.

Proof(2):

Let $\epsilon>0$, take $\delta=\frac{\epsilon}{2}$. Therefore, if we suppose that $|x-y|<\delta$

$$
\Rightarrow|f(x)-f(y)|=\left|x^{2}-y^{2}\right|=|(x-y)||(x+y)|<\delta|(x+y)| \leq 2 \delta,
$$ since $x, y \in A=(0,1]$ and $x+y \leq 2 \Rightarrow|f(x)-f(y)|<2 \delta=2 \cdot \frac{\epsilon}{2}=\epsilon$.

$$
\Rightarrow|f(x)-f(y)|<\epsilon .
$$

Since $\delta=\frac{\epsilon}{2}$ depends on ϵ only, therefore $f(x)=x^{2}$ is uniformly continuous on $A=(0,1]$.

Example:

Let f be a real-valued function defined on $A=(0,1]$ by;

$$
f(x)=\frac{1}{x}, \forall x \in A=(0,1] .
$$

Clearly, f is continuous on A (as an exercise: show that). We will show that, f is not uniformly continuous at A. To prove this, let $\epsilon=10$ and suppose that we could find a $0<\delta<1$, to satisfy the condition of uniform continuity. Take $x=\delta, p=\frac{\delta}{11}$. Therefore, $|x-p|=\left|\delta-\frac{\delta}{11}\right|<\delta$.
But $|f(x)-f(p)|=\left|\frac{1}{\delta}-\frac{11}{\delta}\right|=\left|-\frac{10}{\delta}\right|=\frac{10}{\delta}>10=\epsilon$, (since $0<\delta<1$). Thus f is not uniformly continuous on $A=(0,1]$.
The important point to note here, the sequence $\left\langle\frac{1}{n}\right\rangle$ is a Cauchy sequence in \mathbb{R}, but the sequence $\left\langle f\left(\frac{1}{n}\right)\right\rangle=\langle n\rangle$ is not a Cauchy sequence in \mathbb{R}.
Thus, if $f: S \rightarrow T$ is a continuous function on a subset A of S and $\left\langle x_{n}\right\rangle$ is a Cauchy sequence in A, then $\left\langle f\left(x_{n}\right)\right\rangle$ need not to be a Cauchy sequence in T.

Theorem:

Let $f: S \rightarrow T$ be a function from a metric space $\left(S, d_{S}\right)$, into a metric space (T, d_{T}). If f is uniformly continuous on S and $\left\langle x_{n}\right\rangle$ is a Cauchy sequence in S, then $\left\langle f\left(x_{n}\right)\right\rangle$ is a Cauchy sequence in T.

Proof:

Wanted: $\left\langle f\left(x_{n}\right)\right\rangle$ is a Cauchy sequence in T. Let $\epsilon>0$, wanted: $N \in \mathbb{Z}^{+} \ni$

$$
d_{T}\left(f\left(x_{m}\right), f\left(x_{n}\right)\right)<\epsilon, \forall m, n \geq N .
$$

Since f is uniformly continuous on S and $\epsilon>0$, hence \exists a $\delta>0$ (depending on ϵ only) such that if $x, y \in A$ and,

$$
d_{S}(x, y)<\delta \Rightarrow d_{T}(f(x), f(y))<\epsilon \ldots(*)
$$

Since $\delta>0$ and $\left\langle x_{n}\right\rangle$ is a Cauchy sequence in S, then $\exists N \in \mathbb{Z}^{+} \ni$

$$
d_{T}\left(x_{m}, x_{n}\right)<\delta, \forall m, n \geq N
$$

From $(*)$ above $\Rightarrow d_{T}\left(f\left(x_{m}\right), f\left(x_{n}\right)\right)<\epsilon, \forall m, n \geq N$.
$\left\langle f\left(x_{n}\right)\right\rangle$ is a Cauchy sequence in T.

Theorem (Heine theorem):

Let $f: S \rightarrow T$ be a function from a metric space $\left(S, d_{S}\right)$, into a metric space $\left(T, d_{T}\right)$. If f is continuous on a compact subset $A \subseteq S$, then f is uniformly continuous on A.

Proof:

Let $\epsilon>0$. Wanted: $\exists a \delta>0$ (depending on ϵ) such that if $x, p \in A$ and,

$$
d_{S}(x, p)<\delta \Rightarrow d_{T}(f(x), f(p))<\epsilon
$$

Since f is continuous on A and $\epsilon>0$, then, $\forall a \in A \exists a \delta_{a}>0$ (depending on a and on ϵ) such that if $x \in A$ and;

$$
\begin{equation*}
d_{S}(x, a)<\delta_{a} \Rightarrow d_{T}(f(x), f(a))<\frac{\epsilon}{2} \tag{*}
\end{equation*}
$$

The collection $\left\{\left.B_{S}\left(a ; \frac{\delta_{a}}{2}\right) \right\rvert\, a \in A\right\}$ forms an open covering of A, since;

$$
A \subseteq \bigcup_{a \in A} B_{S}\left(a ; \frac{\delta_{a}}{2}\right)
$$

But A is compact $\Rightarrow \exists$ a finite subcover of A of $\left\{\left.B_{S}\left(a ; \frac{\delta_{a}}{2}\right) \right\rvert\, a \in A\right\}$, say;

$$
\left\{B_{S}\left(a_{1} ; \frac{\delta_{a_{1}}}{2}\right), B_{S}\left(a_{2} ; \frac{\delta_{a_{2}}}{2}\right), \ldots, B_{S}\left(a_{n} ; \frac{\delta_{a_{n}}}{2}\right)\right\}
$$

i.e. $A \subseteq \bigcup_{i=1}^{n} B_{S}\left(a_{i} ; \frac{\delta_{a_{i}}}{2}\right)$. Choose $\delta=\operatorname{Min}\left\{\frac{\delta_{a_{1}}}{2}, \frac{\delta_{a_{2}}}{2}, \ldots, \frac{\delta_{a_{n}}}{2}\right\}>0$. That is, our choice of δ in this case implies that $\delta \leq \frac{\delta_{a_{k}}}{2}$, for all $k=1,2, \ldots, n$ and hence δ depend on ϵ only.

Now, we will show this $\delta>0$ satisfy the uniform continuity condition of f. To do this, let x and p be any two points of A with $d_{S}(x, p)<\delta$, we need only to show $d_{T}(f(x), f(y))<\epsilon$.
Since $\quad x \in A \subseteq \bigcup_{i=1}^{n} B_{S}\left(a_{i} ; \frac{\delta_{a_{i}}}{2}\right)$, hence $\exists k=1, \ldots, n \ni x \in B_{S}\left(a_{k} ; \frac{\delta_{a_{k}}}{2}\right)$, i.e. $d_{S}\left(x, a_{k}\right)<\frac{\delta_{a_{k}}}{2}$. Since $x, p, a_{k} \in A$, hence by using the triangle inequality we have;

$$
d_{S}\left(p, a_{k}\right) \leq d_{S}(p, x)+d_{S}\left(x, a_{k}\right)<\delta+\frac{\delta_{a_{k}}}{2}<\frac{\delta_{a_{k}}}{2}+\frac{\delta_{a_{k}}}{2}=\delta_{a_{k}}
$$

From (*) above, since $d_{S}\left(x, a_{k}\right)<\frac{\delta_{a_{k}}}{2}<\delta_{a_{k}}$ and $d_{S}\left(p, a_{k}\right) \leq \delta_{a_{k}}$, hence $d_{T}\left(f(x), f\left(a_{k}\right)\right)<\frac{\epsilon}{2}$ and $d_{T}\left(f(p), f\left(a_{k}\right)\right)<\frac{\epsilon}{2}$. So, the triangle inequality gives us;

$$
\begin{aligned}
d_{T}(f(p), f(x)) \leq d_{T} & \left(f(x), f\left(a_{k}\right)\right)+d_{T}\left(f(p), f\left(a_{k}\right)\right)<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon \\
& \Rightarrow d_{T}(f(p), f(x))<\epsilon
\end{aligned}
$$

Therefore, f is uniformly continuous on A.

Fixed-point theorem for contractions:

Definition:

Let $f: S \rightarrow S$ be a function from a metric space $\left(S, d_{S}\right)$, into itself. A point $p \in S$ is called a fixed point of f if $f(p)=p$. The function f is called a contraction of S if there is a number $0<x<1$ (called a contraction constant), such that, $d(f(x), f(y)) \leq \alpha d(x, y), \forall x, y \in S$

Exercise:

Let (S, d) be a metric space. If $f: S \rightarrow S$ is a contraction of, then f :is uniformly continuous in S.

Proof:

Let $\epsilon>0$. Wanted: $\exists \delta>0$ (depending on ϵ) \ni for any $x, y \in S$;

$$
d(x, y)<\delta \Rightarrow d(f(x), f(y))<\epsilon
$$

Since $x, y \in S$ and $f: S \rightarrow S$ is a contraction of S, hence;

$$
\exists 0<x<1 \quad \ni d(f(x), f(y)) \leq \alpha d(x, y)
$$

Choose $\delta=\frac{\epsilon}{\alpha}>0$. Therefore, if we suppose that;

$$
\begin{aligned}
& (x, y)<\delta \Rightarrow d(f(x), f(y))<\alpha \delta=\alpha \frac{\epsilon}{\alpha}=\epsilon \\
\Rightarrow & d(f(x), f(y))<\epsilon(\text { where } \delta \text { depending on } \epsilon \text { only })
\end{aligned}
$$

Therefore, f is uniformly continuous.

Theorem (Fixed-point theorem):

Let (S, d) be a complete metric space. If $f: S \rightarrow S$ is a contraction of S, then f has a unique fixed point, i.e. there is a unique point p in S such that $f(p)=p$.

Proof:

First of all, we show that $\exists p \in S \ni f(p)=p$.
Let $x \in S$ be any point of S and consider the sequence;

$$
x, f(x), f(f(x)), f(f(f(x))), \ldots
$$

This is defining a sequence $\left\langle p_{n}\right\rangle$ in S inductively by:

$$
\begin{gathered}
p_{0}=x, \quad p_{n+1}=f\left(p_{n}\right), n=1,2, \ldots \\
\text { i.e. } p_{0}=x, p_{1}=f\left(p_{0}\right)=f(x), p_{2}=f\left(p_{1}\right)=f(f(x)), \ldots
\end{gathered}
$$

Since;

$$
\begin{aligned}
& d\left(p_{n+1}, p_{n}\right)=d\left(f\left(p_{n}\right),\right.\left.f\left(p_{n-1}\right)\right) \leq \alpha d\left(p_{n}, p_{n-1}\right),(\text { since } f \text { is a contraction of } \mathrm{S}) \\
&=\alpha d\left(f\left(p_{n-1}\right), f\left(p_{n-2}\right)\right) \\
& \leq \alpha^{2} d\left(\left(p_{n-1}\right),\left(p_{n-2}\right)\right) \\
&=\alpha^{2}\left(f\left(p_{n-2}\right), f\left(p_{n-3}\right)\right) \\
& \leq \alpha^{3} d\left(\left(p_{n-3}\right),\left(p_{n-3}\right)\right) \\
& \ldots \leq \alpha^{n} d\left(\left(p_{1}\right),\left(p_{0}\right)\right) \\
& \Rightarrow d\left(p_{n+1}, p_{n}\right) \leq \alpha^{n} d\left(p_{1}, p_{0}\right)
\end{aligned}
$$

If we let $\left(p_{1}, p_{0}\right)=c \Rightarrow d\left(p_{n+1}, p_{n}\right) \leq \alpha^{n} c$. Using the triangle inequality we find, for $m>n$;

$d\left(p_{m}, p_{n}\right) \leq d\left(p_{n}, p_{n+1}\right)+d\left(p_{n+1}, p_{n+2}\right)+\cdots+d\left(p_{m-1}, p_{m}\right) ;$
$\leq \alpha^{n} c+\alpha^{n+1} c+\alpha^{n+2} c+\cdots+\alpha^{m-1} c$;
$=c\left(\alpha^{n}+\alpha^{n+1}+\alpha^{n+2}+\cdots+\alpha^{m-1}\right)$;
$=c\left(\left(\alpha^{m-1}+\cdots+\alpha^{n+2}+\alpha^{n+1}+\alpha^{n}+\alpha^{n-1}+\cdots+\alpha\right)-\left(\alpha^{n-1}+\cdots+\alpha\right)\right) ;$
$=c\left(\frac{1-\alpha^{m}}{1-\alpha}-\frac{1-\alpha^{n}}{1-\alpha}\right)$, (the above geometric series a converge since $\alpha<1$);
$=c\left(\frac{1}{1-\alpha}-\frac{\alpha^{m}}{1-\alpha}-\frac{1}{1-\alpha}+\frac{\alpha^{n}}{1-\alpha}\right)=c\left(\frac{\alpha^{n}}{1-\alpha}-\frac{\alpha^{m}}{1-\alpha}\right)<c\left(\frac{\alpha^{n}}{1-\alpha}\right) ;$
$\Rightarrow d\left(p_{m}, p_{n}\right)<c \frac{\alpha^{n}}{1-\alpha}$.
$\Rightarrow d\left(p_{m}, p_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$ (since $\alpha^{n} \rightarrow 0$ as $n \rightarrow \infty$ and hence $\frac{\alpha^{n}}{1-\alpha} \rightarrow 0$ as $n \rightarrow \infty$). Thus, the sequence $\left\langle p_{n}\right\rangle$ is a Cauchy sequence in S. But S is complete $\Rightarrow \exists p \in S \ni p_{n} \rightarrow p$ in S. Since f is uniformly continuous on S (as f is a contraction of S), hence f is continuous on S. But $p \in S$, therefore f is continuous at p. Since $p_{n} \rightarrow p$ in S and f is continuous at $p \Rightarrow f\left(p_{n}\right) \rightarrow f(p)$, i.e. $\lim _{n \rightarrow \infty} f\left(p_{n}\right)=f(p)$, but $\lim _{n \rightarrow \infty} f\left(p_{n}\right)=\lim _{n \rightarrow \infty} p_{n+1}=p$. Therefore, $f(p)=p$.
Finally, we need only to show that p is unique. To do this, assume p and q are two fixed-points of f, i.e. $f(p)=p$ and $f(q)=q$.
Since $p, q \in S$ and f is a contraction of S,

$$
\begin{gathered}
\Rightarrow \exists \quad 0<\alpha<1 \text { э } d(f(p), f(q)) \leq \alpha d(p, q) \\
\Rightarrow \exists 0<\alpha<1 \ni d(p, q) \leq \alpha d(p, q)
\end{gathered}
$$

If we assume that, $d(p, q) \neq 0 \Rightarrow \alpha=1$ (contradiction). Therefore, $(p, q)=0$ $\Rightarrow \quad p=q$.

