M 331 (Mathematical Analysis(i))

Upper (lower) bounds, Maximum (Minimum) elements,

Least (Greatest) bounds:
Definition
Let S € R be a subset of real numbers. If there is a real numbers b such
that x < b (x = b) for all x € S, then b is called an upper (a lower) bound for

S and we will say that S is bounded above (below) by b.

Remark:

1. If b is an upper bound for S, then every real number greatest than b will also
be an upper bound for S , i.e. if b is an upper bound for S and ¢ € R such
that b < c, then c is also an upper bound for S.

2. If b is a lower bound for S and ¢ € R such that ¢ < b then c is also a lower
bound for S.

Definition

Let S € R be a bounded above subset of real numbers. A real number b is
called a least upper bound for S if:
i. b is an upper bound for S, and;
ii. if a real number c is an upper bound for S, then b < ¢, (i.e. there is no
real number less than b can be an upper bound for S).
If b 1s a least upper bound for , we shall denote it by b = Sup §.
Definition
Let S € R be a bounded below subset of real numbers. A real number b is
called a greatest lower bound for S if :
i. b isalower bound for S, and;
iil. 1f areal number c is a lower bound for S, then ¢ < b, (i.e. there is no real
number greater than b is a lower bound for S.

If b is a greatest lower bound for , we shall denote it by b = Inf'S.

— — Dr. Hana' M. Ali




M 331 (Mathematical Analysis(i))

Definition

Let S € R. If b is an upper bound for S and b € S, then b is called a
maximal element of S, i.c. if b =Sup S and b € S, then b is said to be a
maximal element of S, and we shall write in this case b = Max S.

Definition

Let € R.If b is alower bound for S and b € S, then b is called a minimal
element of S, i.e. if b = Inf Sand b € S, then b is a minimal element of S, and
we shall write in this case b = MinS.

Completeness axiom:

Every non-empty set of real numbers which is bounded above (bounded
below) has a supremum (infimum), i.e. 3 b€ R b =Sup S,(b =Inf S).
Examples:

1. The set R* = (0,%) is unbounded above. It has no upper bounds, no
maximal element and no supremum. The real numbers 0 is a lower bound of
R* and every real numbers less than 0 is also a lower bound of R*. R* has no
minimal element , and Inf R* = 0.

2. §=10,1] is bounded above by 1 (i.e. 1 is an upper bound for S ) and is
bounded below by 0 (i.e. 0 is lower bound for S). Sup S =1 and Inf S = 0.
AlsoMaxS =1, andMinS =0.

3. S={xi(x—a)x—b)(x—c)(x—d)<0;a<b<c<d}=(a,b)U(c,d)

b o o § ====ma b ++ddtdd [ anmmnn g 4
< = = = s >
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Note that, a is a lower bound of S (hence any real number less than a is also
a lower bound of S). S is bounded below by a. d is an upper bound for S

(hence any real number greater than a is also an upper bound of S). S is
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bounded above by d .Inf S = a , and S has no minimal element of S. Also
Sup S = d, and S has no maximal element of S.
Remark:
Supremum and Infimum of a subset of real numbers are uniquely
determined whenever they exist.
Explanation:
Suppose Sup S =band Sup S =c.
Since Sup S = b, then b is an upper bound of S.
As b is an upper bound of S and Sup S = ¢, then ¢ < b.
Also, as Sup S = c, then c is an upper bound of S.
As ¢ an upper bound of S and Sup S = b, that implies b < c.
Thus, = b, and hence Sup S is uniquely determined if it is exist .

Similarly, we can show that Inf S is uniquely determined if it is exist.

Some properties of the Supremum:
Theorem (Approximation property) :

Let S € be a non-empty subset of real numbers with an upper bound b.
Then Sup S = b if, and only if, for every a < b there is some a € S such that
a<x<b.

Proof:

Since Sup S = b,hencex < bVx €S ...(¥)

Wanted: 3 x € S 3 a < x < b and from * above we need to show only:
dx€eS d3a<x.

Suppose x < a V x €S, then a is an upper bound for S. But Sup S = b is the

least upper bound for S. Thus b < a and this is a contradiction.

Therefore, 3 x € S 3 a < x and from (*) above, we deduce thata < x < b.

Conversely, suppose Va < b,3x €S 3 a <x < b. Wanted: Sup S = b.
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By contrary, assume that Sup S # b. That is, 3a < b such that a is an upper
bound of S, i.e. x < a,Vx € § and this contradicts our assumption above. Thus,
Sup S =b.

Theorem (Additive property):

Let A,BCS R, be non-empty subsets of real numbers and Ilet
C={x+y€eR:x€ A,y € B} Ifeach of A and B has a supremum, then C has
a supremum and Sup C = Sup A+ Sup B .

Proof:

Let SupA=a,SupB=b.If z€ (C, then 3x € Aandy € B such that
z=x+y. Since SupA=a,SupB =b, hence x <aandy <b and that
implies x+y<a+b = z<a+b.

Therefore a + b 1is an upper bound of C and the Supremum of C exists, say
¢ = Sup C. Therefore,c < a+ b,i.e.SupC <Sup A+ SupB.

To show that c = a + b (i.e. Sup C = Sup A + Sup B .), we need to show that
a + b satisfied the approximation property for supremum.

So, assume e>0.Thus,a—§<a=SupA andb—§<b=5upB.

From the approximation property for supremum, we imply that;

EIxEAandEIyEBBa—§<xSa and—§<ySb.

Sincea—§<x andb—§<y > a+b—e<x+y<a+b.

But+y=z€(C>3a+b—€<z<a-+b. Therefore, SupC = a + b.
=>SupC =SupA+SupB
Theorem (Comparison property):

Let A, B € R be non-empty subsets of real numbers such that x < y for
every x €A and y € B. If B has a Supremum, then A has Supremum and
upA <SupB.

Proof:
Suppose that B has a supremum, say Sup B = b,then y < b Vy € B.
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But x<yVxe€eAandy€B, so x<b Vx €A and that implies b is an
upper bound for A. From completeness axiom Sup A exists, say a=Sup A .
Since b is an upper bound for A and a =SupA, thus a<bh, ie.

Sup A < Sup B.

As a home work prove the following properties of the infimum:
Theorem (Approximation property):

Let S € R be a non-empty set of real numbers with a lower bound b. Then
b = Inf S if, and only if, for every a > b there is some x € S such that
<x<a.

Theorem (Additive property):

Let A ,BS R be non-empty subsets of real numbers and let
C={x+y:x €A,y € B}. If each of A and B has an infimum, then C has an
infimum and Inf C = Inf A+ Inf B..

Theorem (Comparison property):

Let A, B € R be non-empty subsets of real numbers such that x <y, for
every x EA and y€B . If A has a infimum, then B has infimum and
Inf A< Inf B.

Theorem (Archimedean Property of the field of real numbers R):

The set of real numbers R is unbounded above, i.e. if x € R, there exists
n € N such that x < n.
Proof:

Let x € R. By contrary assume there is no n € N such that x < n, i.e.
n < x, Vn € N . Thus, x is an upper bound of N. Therefore, N has a supremum
say y = SupN. Since y —1 <y, hence there exists m€N 3y —1<m, as
an application of the approximation property of y = SupN. Then, y <m + 1,
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te.dm+ 1 €N 3y = SupN <m + 1 and this contradicts the assumption that
y is an upper bound of N. Therefore, R is unbounded above.
Exercises:

1. Let x,y € R be positive real numbers. Then:

a.Ane N3 x <ny.
b.3InEN30<-<y.

c. IneN3In—-1<y<n.

2. Letx,y € R. Then:
a.37 € Q 3 x <r <y, (The Density theorem of the rational numbers).
b.3z € Q° 3 x < z < y, (The Density theorem of the irrational numbers).

Euclidean space R"

When n =1, apoint in R is a real number.

When = 2 , a point in two dimensional space R> = R X R is an ordered pair of
real numbers (x4 , x,).

When n = 3, a point in three-dimensional space R> = R X R X R is a triple of
real numbers (x; , x5, X3).

In general, a point in n- dimensional space R* = R X R X ... X R is an ordered

n-tuple of real numbers (x; ,x,,..., Xx,;). The real number x; is called the k-th
coordinate of the point (x;,%5, ..., Xy).
Definition

Let x = (x1,%3,..., Xxp) and y = (y1,V2, ..., V) be two points in R™

and ¢ € R, We define:
i. Equality: x =y © x; =y, X =V, ..., Xp = V.
ii. Sum: x+y=(0;+y;, X3+ Vs, ., X0 + V)
iii. Multiplication by real numbers (scalars):
cx =c(xqy,Xp, 0, X)) = (CXq,C Xy ) uee, CXp)

iv. Difference: x —y=(x; — V1 , X3 = Vo, e, Xn — Yn)
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v. Origin (zero vector): 0 = (0,0,..., 0)
vi. Inner product (dot product):

X.Yy=X1.Y1+ X3.Y, + -+ Xp. Vp

n
X.y = z Xk- Yk
i=1

vii. Norm (length): [|x|| = vx.x = /x;2 + x,2 + -+ + x,,2 .

Forn =1;
-X ] r
<4 i } >
=¥ fx
Forn = 2;
+—
Forn = 3;
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viii. the norm ||x — y]|| is called the distance between x = (x;,x5, ..., X;)
and y = (y1,¥2, . Yn);
lx —yll = \/(x1 —y1)?+ (g —y2)%* + o+ (X — W)
X
v e=i=dfx,y)
.r
-y
Remark :
(R™,+,.) is a vector space over the filed R .
Properties of the norm:
Let=(x1,%X2,0., Xp), V= 1,Y2, e, V) € R™ Then
a) [|x|| =0 and ||x]| =0 x=0.
b) ||cx|| = [c|||x]| for any ¢ € R, where |c| denotes the absolute value of c.

Q) llx—yll = lly — x|l
d) Cauchy - Schwartz inequality: |x — y| < ||x]||||y]l.

e) Triangle inequality: ||x —y|| < ||x|| + [lyll, sometimes the triangle

inequality written in the form.
lx =yl < llx =zl + llz = ¥ll.
f) llx =yl = {llxll = llyll.

Metric spaces:

Definition:

A matric space is a pair (M ,d) consists of a non-empty set M and a real

valued function d: M X M — R called a metric function or distance function,

satisfying the following properties: for any x ,y ,z € M.
M;:d(x,y) = 0.
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My:d(x,y) =0 x =1y.

Ms:d(x,y) =d(y, x).

My:d(x,z) < d(x,y) +d(y, 2).
Remark:

1. The real number d(x ,y) is called the distance from x to y.

2. The properties (M;) and (M) are state that the distance from any point to
another is never negative, and that the distance from a point to itself is
Zero .

3. The property (M) states that the distance from a point x to a point y is the
same as the distance from y to x.

4. The property (M,) is called the triangle inequality, because if x, y and z
are not collinear points in the plane R> = R X R as shown in the

following figure

¥ div.z) Z

Then M, states that, the length d(x,z) of one side of the triangle is less
than to the sum d(x,y) + d(y, z) of the lengths of the other two sides of
the triangle. Moreover, if x, y and z are collinear points in the plane as

shown in the following figure:

- = ]
x dfx,2) Z dizy ¥y
dix,y)

Then, d(x,z) = d(x,y) +d(y,2)
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Example of metric spaces:
Example 1:
letM =R",n>1andletd: M X M — R be a function defined by;
dx,y) =llx=yll, vx,y €M;

where [|x — y|| = \/(x1 —y1)?+ (g =)+ + (xn — Y)?
:\/2?21(xi —yi)?.
Clearly, the function d above is a metric on M called the Euclidean metric and

in fact the pair (M ,d) = (R", ||.|| ) is called the Euclidean space.

Remark:

) Ifn=1=d(x,y)= |[x—y|Vx,y €R.
2)Iftn=2 =>d(x,y) = |lx—yll

= (%1 —y1)? + (x; — ¥2)%

v(xl er)l (yl JyZ) € RZ .
3)Ifn=3 =d(x,y) =|lx—yll

= (1 —y1)% + (X2 — ¥2)2 + (x5 — ¥3)?
V(x1,%;,%3),( V1,Y2,¥3) € R3.

Exercise: Prove the Murkowski's inequality:- Forp > 1

p p p
\/zzgﬂxi Fyl < Jz?=1|xi|p Sl

To show that, (R™, [|.|| ) is a metric space, let;

X = (xl 1 X2y ey xn)ayz (yl y Y2 5y yn) € ]Rn'

(M): From the definition of d(x,y) = ||lx — y|| = \/Z’-‘ (x; — v¥;)?, hence

=1
the rang of the function d: R™ X R™ — R is equal to [0, 00). Thus,
d(x,y) =0.Vx,y € R".

(Mp): d(x,y) =0 lx =yl =0 & /TG~y = 0:
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YL (x—-y) e@—-y))=0ex-y=0cx=y, Vi=

1,...,n®x1=y1 W Xog = Yo e Xn =Vp X =Y

(M3):d(x,y) = |lx — yII—\/Zl 1 — JZ (O - i))2

- Jz;;l(yi ~ %) = lly = xll = (3, ).

(Ma):d(x,2) = llx — 2l = S~y + 4 - 20

< (B =0+ (B0 - 2

=llx=yll+lly—zll =d(x,y) + d(y,2).
Therefore (R™, ||. || ) is a metric space.
Example (2):
Let M be a non-empty set and let d: M X M — R be a function defined by

_ (0 ifx=y
d(x,y)—{l ifx+y’

Then d is a metric function on M and hence (M , d) is a metric space called the

discrete metric space.

Sol. :

Letx,y,z€ M,

(M): Since d(x,y)=0 if x=y and d(x,y) =1if x #y. Therefore,
d(x,y) =20,Vx,y €M.

(M;y): d(x,y) =0ex=y

ey =5 B2 27 =0 12 =m0

(M,4): We have the following cases:
i. x=y,x#z(.ey+2)
Since 1<0+4+1=d(x,z) <d(x,y)+d(y,2).
ii. x=z,y#z(@.e.y#x)
since0<1+1=d(x,z) <dx,y)+d(y,z).
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iii.

iv.

z=y,x#y(l.e.x # z)

sincel1<1+0=d(x,z) <d(x,y)+d(y,z).

X=y=2z

since0<0+0=>d(x,z) <d(x,y)+d(y,z).

X+FY+Z

sincel <1+1=d(x,z)<d(x,y)+d(y,z).

Hence (x,z) <d(x,y)+d(y,z),Vx,y,z€ M.

Therefore, (M , d) is a metric space.
Example (3):

Let (M, d) be a metric space. Define a functione: M X M — R by:
e(x,y) = Min{l,d(x y)};

for any x ,y € M. Therefore (M , e) is a metric space.

Sol .:

Let x,y,z€ M.

(M): Since, either e(x,y) =1, (hence e(x,y) >0) or e(x,y) =d(x,y),

(hence e(x,y) = 0). Therefore, e(x,y) = 0.
(My):e(x,y) =0 Min{l,d(x,y)}=0sd(xy)=0 x=1y.
(M3): e(x;y) = Mln{l ,d(x,y)} = Mln{l ,d(y,X)} = e(ylx)'
(M ,): Note that, in general, e(x,y) = Min{l1,d(x,y)} < 1,Vx,y € M.

Wanted: e(x,z) < e(x,y) + e(y, z). We have the following cases:

i. Suppose either, e(x,y) =1 or e(y,z) =1. To be definite, suppose

e(x,y)=1. We have that, in general (x,z)<1 Vx,zeM =

e(x,z)<1<1+e(y,z) =e(x,y) +e(y,z). Similarly, if we suppose

e(y,z) = 1, we can deduce that the triangle inequality is hold.

ii. Suppose bothe(x,y) <1

e(y,z) =d(y,z). Note that;

and e(y,z) <1=e(x,y)=d(x,y) and

e(x,z) =Min{l,d(x,2)} <d(x,z) <d(x,y) +d(y,z)

12
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=e(x,y)+e(y,2).
= e(x,z)<e(lx,y)+e(y,2).
Therefore, (M , e) is a metric space.
Example (4):
Let (M ,d) be a metric space. Define a function e:M X M — R as:

d(x,y)

—1+d(x’y), Vx,y€eM.

e(x,y) =
Then, (M , e) is a metric space.
Sol.:
Let x,y,z € M.
(M,): Since d(x,y) = 0, then clearly e(x,y) = 0.

d(x,y)
(My): e(x,y) :0(:)1+d32xy’y)=0(:>d(x,y) =0ox=y.

. _ dlxy) _ dlyx) _ . X .
(M3): e(x,y) = Gy 1tdy 0 e(y,x), since (M, d) is a metric space.

(M,): Wanted: e(x,z) <e(x,y) +e(y,z).

d(x,y) < d(x,y)
1+d(x ,y)+d(y,z) — 1+d(x,y)

d(y ,z) d(y z)
1+d(x,y)+d(y 2) = 1+d(y ,2) e(v,z) .

Note that,

= e(x,y) and;

Since (M ,d) is a metric space, hence d(x,z) <d(x,y) +d(y,z) and we
have the following;

d(x ,z) < d(x,y)+d(y ,z)
1+d(x,z) = 1+d(x,y)+d(y ,z)

d(y ,z) d(x,y)+d(y ,z) < d(x.,y) d(y ,z)
T 14d(x )+d(y,z)  1+d(x,y)+d(v,z) — 1+d(x,y)  1+d(y,z)

=e(x,y)+e(y,z)= e(x,z) <e(x,y) +e(y,2)

Therefore, (M , e) is a metric space.

e(x,z) =

Definition (Metric subspace ):
Let (M ,d) be a metric space and let S be a non-empty subset of M. Then

(§,d) is also a metric space with the same metric d or more precisely, with the

— — Dr. Hana' M. Ali
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restriction of d on S X S, d =dgys : S XS = R, as metric. We call (§,d) a
metric subspace of (M, d).

Examples:

Example 1:

Let (M,d) be a metric space, where M =R and d(x,y) =[x —y|,
Vx,y€M. Let S =Q, the set of rational numbers. Then (§,d) is a matric
subspace of (M, d), i.e. (Q, [.]) is a metric subspace of (R, |[.]).

Example 2:
Let (R?, d) be the Euclidean space, where;

d(x,y) = \/(x1 —y1)% + (xz — ¥2)%, V(x1, %2 ),(y1,¥2) € R2
Define another metric d: R? X R?> - R on R2as;
d(x,y) = \/(xl —v1)2 +4(x; — ¥5)?, V(x1,%5),(01,y2) € R2

Note that, (R?,d) is not a metric subspace of (R?, d), because the metric d is

different from d.

Point-Set topology in metric spaces

Definition (Open ball):

Let (M ,d) be a metric space and let a € M. An open ball B(a;r) with
center a and radius r is defined by:

By(g;r) ={xeM|d(x,a) <r}.

Remark:

If (§,d) is a metric subspace of a metric space (M ,d) and a € S, then the
open ball B;(a;r) of S is given by:

Bs(a;r) = SN By(a;r).

Example 1: Consider the Euclidean metric space (R" ,d),n = 1, where;

— — Dr. Hana' M. Ali
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n
d(x,y) = ”x_y” = Z(xi —yi)Z,V(Xl JXZJ"'an)J(yl » Y2 ""'yn) € R"

i=1

Leta = (a,,a,,..,a,) € R*and r > 0, therefore,

Bla;r)={xeR":d(x,y) <r}={xeR"|x—al <r}

n
=<{x €ER": X —a;):<r
l l
i=1

={x ER™: (x; —ay)? + (xz — )% + -+ + (X, — a)* <17}
Observe that;
i. Whenn =1, (R,d) isthe Euclidean metric space, where;
dlx,y)=|x—y|,Vx,yER.
In this case;

By(a;r) = {x ER:{/(x—a)’< r}.
={xeR:|x—a|<r}={xeR:—r<x—a<r}
={xeR:a—r<x<a+r}=(a—-r,a+r).

Hence, in the Euclidean metric space (IR, |. |), the open balls are open intervals.
_— -

y: oy 3
e e — > >
r r

ii. When n = 2, (R?, d) is the Euclidean metric space, where;

d(x,y) = (01 —y1)? + (2 —¥2)2,V (%1, %), (31, ¥2 ) € RZ

In this case,

By(a;r) = {x € R?: (x; — a;)? + (x, — a,)? < r?} = Open circular disk.
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iii. When n = 3, (R3,d) is the Euclidean metric space, where;
d(x,y) =/ (x1 = y1)? + (x2 — y2)? + (x3 — ¥3)?,
V (x1,%2,%3),(1,Y2,¥) € R,

In this case ,

Bu(a;r) = {x € R?*: (x; —a;)* + (%2 — a)* + (x3 — a3)* < r?}

= Open solid sphere.

Example 2:

Let M = R? with the following three metrics spaces on M that given by:

i d(x,y) = \/(x1 —y1)? + (g —¥2)2,V (%1, %), (y1,y2 ) € R%,
ii. di(x;y) = Max{lx; —yil, 1% = y21LV (1,22 ), (1,52 ) ER?.
iil. dy(0y) =Ixg —y1l + 162 — 2,V (21, 2%2), (1,2 ) € R
If a €R? and r > 0, we can draw the shape of the open ball B(a;r) in R?

with respect to each of the above metrics as shown in the following figures:

Definition (interior point):
Let (M, d) be a metric space and let @ # S € M. A point a € S is called
interior point of S if, and only if, 3 r > 0 such that By,(a;r) S S.

Definition (open set):
Let (M ,d) be a metric space. A non-empty subset S of M is said to be
open in M if, and only if, all points of S are interior points of .

— — Dr. Hana' M. Ali
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Definition (interior of set):
The set of all interior points of S is called the interior of S and denoted by
either S° or nt(S) .
Remark: In general, S° C S.
Example 1: Find the interior of the following sets:
1. In the Euclidean space (R, |.]) :
A=[-3,5],B=(1,4},C=(GB,8)D={5} E=1.
A" =(-3,5). Note that, for every 7>0, we have
B(—3;r) = (-3 —1r,—3+1r) € A. This shows that —3 is not an interior
point of A. i.e. —3 € A". Similarly, 5 ¢ A”. Deduce that, B’ = (1,4),
C°=(5,8),D"=@¢andE" = Q.
2. In the Euclidean space (R?, ||.])).
A={(x,y):x=y} , B={(x,y):x=0,y=0},
C={(x,y):x*+y2=1},D ={(x,y): x2 + y? > 1}
E={(x,y):x*+y?<1}
A=0¢,B={x,y):x=20,y=0} ,C =0,
D°’={(x,y):x>+y?>1} , FF =F.

Exercises:

1) In a metric space (M ,d), show that both @ and M are open sets in M .

2) In a metric space (M ,d), show that every open ball By, (a;r) is an open
setin M .

3) In a discrete metric space (M ,d), show that every subset S of M is open
setin M.

4) In a metric space S = [0,1] of the Euclidean space (R, | |), show that
every interval of the form [0, x) or (x,1] , where 0 < x < 1, is an open

setin S. Are these sets open in R? explain that.
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Proof 2:
Wanted: By, (a;r) open setin M.

Let b € By(a;r), we need to show b is an interior point of By (a;7r), i.e.
wanted: 3 § > 0 such that By, (b; §) € By (a;r).
Since b € By (a;r), henced(b,a) <.
Let = Min{d(b,a),r—d(b,a)} . Thus § >0 and we will show that
By (b;8) € By (a;r). Let x € By (b; §), wanted: x € By (a; ), i.e. we need to
show d(x,a) <.
Since x € By (b; §), hence d(x,b) < 6 and by using the triangle inequality we
have; d(x,a) < d(x,b)+ d(b,a) = d(x,a) <6 +d(b,a) ..(x).
1. If § =d(b,a) = 6§ <r —d(b,a), then by recalling (*) we have;
dix,a)<d +d(b,a)<r—d(b,a)+d(b,a)=r
=d(x,a)<r
2. If6 =r—d(b,a), then (*) implies that;
dix,a)<d +db,a)<r—d(b,a)+d(b,a)=r
=d(x,a)<r
Therefore, By, (b; 6) € By(a;r) and By, (a;r) is an open set in .
Proof 3:
Wanted : S open in M. Let x € S, we need to show that: 3r > 0 such that

By(b;r) € S.

Choose r = % > 0, therefore;
1 1
By (x; 5) = {y eEM:d(y,x) <§}

={yeM:d(y,x) <0}
={yeM:y=x}={x}

1
— B, (x; E) o
Sincex eS={x} <SS =>BM(x; %) c S.
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Hence S is an open set in M.
The important point to note here,
i. In the discrete metric space every singleton is an open ball and
from exercise (2) above, we have every singleton is an open set.
ii. There are many metric spaces satisfied the property; "every
singleton is an open set". As a home work prove that: If
M = {x4,x,,...,x,} is a finite set and d:M X M — R be any
metric function can be defined on M, then the metric space (M, d)
satisfied the property "every singleton is an open set".
Proof 4:

We know that, if By, (a; ) is an open ball in a metric space (M, d), then
Bs(a;r) = S N By (a;r) is an open ball in the metric subspace (S, d). Note that,
Br(0;x) = (—x,x) isanopenballin R,V 0 < x < 1.
= Bs(0;x) =SNBr(0;x) =[0,1]n(—x,x) (VO<x<1)

=[0,x) (VO<x<1).
= Bs(0;x) = [0,x) is an open ball in the metric subspace S, and since each
open ball is an open set, therefore [0, x) is open set in the metric subspace S for
all0 < x < 1.
Similarly, Br(1;x) = (1 —x,1+ x)isanopenballin R (V0 < x < 1).
= Bs(1;x) =[0,1]NnBr(1;x) =[01]n(1—x,1+x)(VO<x<1)
= (1—x,1]
Notethat ,as0<x<1=>-1<—x<0 =0<1—-x<1
= Bs(1;x) = (x,1], Vo<x<l1

= (x,1],(V 0 < x < 1) is an open set in the metric subspace S.
Remark:

Form the above we deduce that, if (S, d) is a metric subspace of a metric

space (M ,d), then the open sets in (S, d) need not be open sets in (M ,d). For

: 1, . : :
example recall exercise (4) above, we know that [0 ’E) 1s open set in the metric
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subspace = [0,1] , while [0 ,%) is not open set in R, since the point 0 € [0 ,%) is
not an interior point of [0, %) w.r.t. the Euclidean space (R, | |).

Exercise:
Let (M ,d ) be a metric space and x € M. If r, > r; > 0, prove that;
B(x;11) € B(x;1).
Theorem:
Let (M ,d ) be a metric space. Then:
1. The intersection of a finite collection of open sets in M is an open set in
M.
2. The union of any collection of open sets in M is an open set in M.
Proof:
For 1: Suppose Gy, ..., G, be open sets in M. Wanted: N}—,; G; is an open set in
M,i.e. wanted: Vx € N1, G; 3r >0 3 B(x;7r) S Ni=, G;.
Let x € N%, G;. Then, x € G; Vi =1, ...,n. But, G; is an open set in M,
thus, 3r; >0 3 B(x;1;) € G;Vi =1,...,n. Put, r = Min{ry, ...,1;,} > 0.
Since r<r, hence, B(x;r)€B(x;r;) €G;Vi=1,..,n. Thus,
B(x;r) € N}, G;. So, x is an interior point in N}, G;. Therefore, N}, G;
1S an open set.
For 2: Assume, G, be an open set in M for all « € I. Wanted: U,¢; G, 1s an
open set, i.e. wanted: Vx € Uye; G, 37 >0 3 B(x;7) € Uper Gg-
Let x € Uger Go- Then, x € Gg for some § € I. But, Gg is an open set in M,
therefore, 3r > 0 3 B(x;7) € Gg € Uges G- Thus, B(x;7) € Uge Gq-
So, x is an interior point in U,¢; G, . Therefore, U,¢; G, 1s an open set.
Remark:
In general, the intersection of any collection of open sets in a metric space

(M, d) need not to be open set in M. As a counter example, the collection
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{(_71 ,%)| n € Z*} is an infinite collection of open sets (open intervals) in the

Euclidean space R, but N,,cz+ (_71 ,%) = {0} is not open in R.
Theorem:

Let (§,d) be a metric subspace of a metric space (M ,d) and let X € S.
Then X is open in S if, and only if, X = S N A for some set A which is open in
M.

Proof:
Suppose X is an open set in S. Wanted: 3 an openset Ain 3 X =S N A.
Since X is an open setin S, hence, Vx €S , 31, >0 3 By(x; r,) S X. Itis
clear that, X =U,cx Bs(x; 7). But B.(x; 1) =S N By (x; 1,). So, if we let
A =U,cx By (x; 1,), then A is a union of open sets in M, so it is an open set in
M. To complete the proof, we need only to show that X = S N A.
X =Uxex Bu(x; 1)
=Uxex (S N By (x5 1)
= 5N (Uxex By (x; 73))
=SNA
Conversely, suppose 3 an open set A in M such that X = S N A. Wanted: X is
open in S. Let x € X, wanted: x is an interior point of X in S, 1.e. 3r >0 3>
B,(x; r,) € X.
Sincex EX=SNA = x €A. But A is an open set in M, then 3r>0 3
By(x; ) S A =SSN By(x; ) SSNA=X.
But B;(x; 1) =S N By(x; 1) is an open ball in S, hence
Bi(x; ) SSNA=X
= B,(x; ) S X
Hence, x is an interior point of X in S and X is open in S.
Definition (closed set):

Let (M, d ) be a metric space. A subset S € M is called closed set in M if],

and only if, S = M — S is open set in .
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Examples:
In the Euclidean metric space (R?, ||.|]) , the sets ,
A={(x,y)x =y} ,B={(x,y):x*+y* <1};
C={(x,y):x*+y?>1} and,
D ={(x,y):x* +y? =1};
are closed set in R?, while the set E = {(x,y): x? + y* < 1} 1is not

closed setin R? .

Exercises:
Let (M ,d ) be a metric space. Prove the following statements:
1. The union of a finite collection of closed sets in M is closed set in M.
2. The intersection of any collection of closed sets in M is closed set in M.
3. If Ais open set in M and B is closed set in M, show that A — B is open set
in M and B — A is closed set in M.
Proof (1):

Let M ={G;li=1,2,..,n} be a finite collection of closed sets in M.
Wanted: UL, G; is closed set in M, i.e. wanted: M — (U}L; G;) is open set in
M.

Note that, M — (UL, G;) =N}, (M — G;).

Since G; is closed setin M = M — (G;)isopensetin V i=1,2,..,n.
=N, (M —(Gy))isopensetinMV i=1,2,..,n.
= M — (UL, G;)isopensetinMV i=1,2,..,n.
—=UL, G; is closed set in M.

Proof (3):

i. Firstly wanted: A — B is open set in M.
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Note that, A—B=ANB° =AnN (M — B). Since B is closed set in M,
then M — B is open in M. But, A is also open in M, then AN (M — B) is
open set in M and hence A — B is open set in M.
ii. Secondly wanted: B — A is closed setin M, i.e. M — (B — A) is open in M.
Note that,
M—(B—-A)=Mn(BNA ) =Mn(B°UA)
=(MNB)UA=(M—-B)UA.
Since B is closed in M, then M — B is open in M. But A is open in M, thus
(M —B)UA is open in M. Hence M — (B — A) is open in M. Therefore
(B — A) is closed set in M.
Theorem:

Let (S,d ) be a metric subspace of a metric space (M ,d ) and letY € S.
Then Y is closed in S if, and only if, ¥ = S N B for some closed set B in M.
Proof :

Suppose that Y is closed in S. Wanted: 3aclosedset Bin 3Y =S5 nNB.
Since Y is closed in S, hence S —Y is open in S. Thus, 3 an open set A in M
such that S —Y = S N A (according to a previous result).
=Y=5—-(SNA)=5Sn(SnA)F

=SN(SUA) =N SHOU(SNAY)
=QUESNA)=SNA=SN(M—-A)
=Y=5n(M-A).
Since A is open in M, hence M — A is closed in M. So, if we put M — A =B,
then B is closed set in M such that Y = S N B and our claim is hold.
Conversely, suppose aclosedset Bin M 3Y =S N B. Wanted: Y is closed in
S,1e.S—YisopeninS.
Note that,
S—Y=85-(EnNB)=SNn(SNB)°
=SN(S°UB)=SNB“=5SnNn(M—B)
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Since B is closed in M, then A=M—B is open inM. Therefore,
S—Y = 5NA4Ais an open set in S, (according to a previous result) = Y is

closed in S.

Theorem (Axioms of an interior):

Let (M, d) be a metric space and S,T S M. Then:
@ =@ and M° = M.
IfScT,thenS° S T°.
S° is the largest open set in M that contained in S.
S is open if, and only if, S = S°.
§° =5
(SNT)Y =5"nT".
In general, S°UT° S (SUT) ,but (SUT) #S°UT".
Proof 3:

Let Q ={G S M| Gisopeni nM andG S S} be the collection of all open

A L oo

sets in M that contained in S.

Firstly, we shall prove that S° = Ugeq G.

For $° € Ugeq G: Letx € S°, then3r >0 3 B(x;r) € S.

Wanted: x € UgeqG.

According to a previous result, B(x;r) is an open set with B(x;7) € S. Thus,
B(x;r)€Q, so 3IG' €Q3B(x;r)=G'. But G S UgeqG, then
B(x;7) € UgeqG = x € UgeqG = S° S UgeqG.

For UgeqG € S°: Letx € Ugeq G. Wanted: x € S°.

Since x € Ugeq G, hence 3G’ € Q 3 x € G'. That is, G' is an open set in M and
G € S. Therefore, x is an interior point of G’ and there exists r > 0 such that
B(x;r) €G' €S = B(x;r) €S. Thus, x € S°and Ugeq G € S°.

Now, since S° = Ugeq G is a union of open sets in M, hence S°is open in M

and it contained in S, since S° € S. Thus, S° € (. In fact, if G is open and G S
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S, then G € Ugeq G = S°. Therefore, S° is the largest open set that contained
inS.
Proof 6:

il

Wanted: (SNT) =S°NT".
For (SNT) €S°NT°: Since SNTCSS and SNTCST, hence
(SNT)Y €S5° and (SNT) ST° as an application of axiom 2 above.
Therefore, (SNT) €S°NT°.
For S°NT°S(SNT): Let x€S°NT°. Wanted: x € (SNT)’, ie.
wanted: 3r >0 3 B(x;r) €SNT.
Sincex €ES°NT° = x € S°andx € T°;

=3, >0 3B(x;ry) €Sand3r, >0 3 B(x;1,) €T

Put r = Min{r,,}. According to a previous result, B(x;r) € B(x; r;) for
i=12 =B(xr)cS ad Bgr)€T = B(xr)csSnT=
x€(SNT).

Fromiandii, (SNT) =S°NT°.

Exercise: Prove the axioms 1,2,4,5 and 7 above.

Definition (Adherent points):

Let (M ,d ) be a metric space and let S € M. A point x € M is called an

adherent point of S if, and only if, for every r > 0 the open ball By (x; 1)

satisfied, By, (x; r) NS + Q.

=

X ) B(x;7)

By(x; NS +=0
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Definition (closure of a set):
The set of all adherent points of a set S is called the closure of a set S
which is denoted by S.
Remark: In general, S € S. Infact,if x € S, then x € By, (x; r) NS, Vr > 0.
Example 1:
In the Euclidean metric space (R, |.|), let;
A=(-3,4) ,B=[0,1,C=[3,7],D=Z , E=Q.
Then,A=[-3,4],B=[0,1] ,C=[3,7]1,D=7Z ,E=R.
Example 2:
In the Buclidean metric space ( R?, ||. |, let;
A={(x,y):x?+vy2<1},B={(x,y): x>+ y? > 1},
C={(x,y):x*+y* =1}, D={(x,y):x=0,y=0}.
= A={(x,y):x*+y?2 <1}, B={(x,y):x*+y* =1},
C={(x,y):x*+vy?2=1} ,D={(x,y):x=>0,y=>01}.

Theorem (Axioms of a Closure):

Let (M ,d ) be a metric space and let S, T € M. Then

1. 0=0and M = M.
2. IfS € T,thenSCT.
3. S is the smallest closed set in M such that S € S.
4. Sisclosed inM & S =S.
5.5=§.
6. SUT=SUT.
7. Ingeneral, SNT)SSNT.But,(SNT)#SnT.
8. =5
Proof 3:

Let Q={F S M|FisclosednM andS € F} be the collection of all

closed sets in M that contain S.
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Firstly, we shall prove that S = Npeq F.
For S € NpegF:Letx € S,thenvVr >0 2 B(x;7)NS = 0.
Wanted: x € Ngeq F.
By contrary, assume that x € NpeqF. So, IF' €O 3 x & F' = x € F'°. But
F'“ is open set, since F' is closed, that is x is an interior point of F'®, so
3r>03 B(;r) S F' =B(x;r)NF' =@. But F' €Q, ie. it satisfied
SCF =B(x;r)NnS<SB(x;r)NF' =0.
Thus,37>03 B(x;r) NS =@ = x & S and that contradicts our assumption
that x € S. Therefore, x € Npeq F.
For Npeq F € S: Let x € Npeq F. Wanted: x € S:
By contrary, suppose x € S. That is, 37 >03 B(x;r) NS =@. Thus,
SC (B(x;r)) €. But (B(x;7r))€ is a closed set in M and it contains S, so
(B(x;r))€€Q. That is, IF' € Q3 F' = (B(x;7)) ¢ = NpegF € F'. But,
X & (B(x;1) €2 NpeqF = x € Npeq F and that contradict our assumption
that x € Ngeq F. Therefore, x € S and NpeqF € S.
Now, since S = NgeqF is an intersection of closed sets in M, hence S is
closed and it contains S, since S € S. Thus, S € Q. In fact, if F is closed and
SCF, then S=NpeqF S F. Therefore, S is the smallest closed set that
contain S.
Proof 6:

Wanted: SUT =S UT.
ii ForSUTC SUT:Since SCSUTandT S SUT,henceS < SUT and

uTc SUT.

T € SUT, as an application of axiom 2 above. Therefore, S
ii. ForSUT SSUT:Letx e SUT. Wanted: x € SUT.
By contrary, assume x € SUT = x € Sandx ¢ T;
=3, >0 3B(x;ry)NS=Q@and3r, >0 3B(x;r,) NT = @,
Put r = Min{r;,r,}. According to a previous result, B(x;r) € B(x; r;) for
i = 1,2. Then;
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Bx;r) NS S B(x;rp)NS=0@and B(x;r)NT S B(x;1,)NT = @;
= Bx;r)NS=@and B(x;r)NT=0= B(;r)Nn(SUT) =0.
Therefore, x € S U T (a contradiction). Thus,x E SUT andSUT € SUT.
Fromiandii, SUT =SUT.
Proof 8:
Wanted: §° = 5¢°.
For S° € S¢: Letx € S°. Wanted: x € ¢,
Sincex €S = 3r>0 3B(x;r) €SS =B(x;r)NS =0
—x ¢S5 =>xe85¢ =8 c5°.

For S¢° C S": Letx € S°°. Wanted: x € S”.
Since x €5 = x¢S° =3Ir>03B(x;r1)NS =0 =B(x;r) S S =
x€ES =5 cS”.
Therefore, our goal is down.

Exercise: Prove the axioms 1,2,4,5 and 7 above.

Definition (Accumulation (cluster) points of a set):

Let (M ,d ) be a metric space and let S € M. A point x € M is said to be
an Accumulation point of S if, and only if, for every open ball By, (x; r);

By(x;r) NS —{x} # Q.

The set of all Accumulation points of a set S is called the derived set of S
which is denoted by S’ or dS. Note that, S’ € S.
Remark:

Let (M ,d ) be a metric space and let S © M. Then:
1. x is an Accumulation point of S if, and only if, every open ball By, (x; 1)

contains points of S different from x.

2. x i1s an Accumulation point of S if, and only if, x is an adherent point of

S —{x}.
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Example:
In the Euclidean metric space (R, |.|), let;
A=(-3,4) ,B=[0,1],C=[3,7], D=1
= A'=[-3,4],B'=[0,1] ,C' =[3,7],D'=0 ,E'

Example:
In the Euclidean metric space ( R?, ||. |]), let ;
A={(x,y):x*+y?<1}, B={(,y):x*+y2>1},
C={(x,y):x*+y*=1}, D={(x,y):x=0,y=0}.
= A ={(x,y):x*+y2 <1}, B ={(x,y):x*+y?=>1}
C'={(x,y):x*+y2=1}, D'={(x,y):x=>0,y=>0}.

Theorem (Axioms of a Derived set):
Let (M ,d ) be a metric space and let S ,T S M. Then
1. ST =S5cT.
2. (SuTn) =S"uT"
3. Ingeneral, SNT) €cS'NnT,but (SNT) =5 NT".
4. S=S"US.
Proof 4:
To show that, S = S’ U S, we need to prove:
i. SSuscs.
ii. ScS'uUSs.
For i: From the definitions of the closure and the derived set of S, we have
ScSandS' € S. Therefore,S’US C S.
For ii: let x € S. Wanted: x € S'U S.
By contrary, assume that x € S'US = x € S and x € S;
x¢S' = 3Ar>0, B(x;r)nS —{x}=0.
= 3Ar>0, B(x;r)NS =0, (sincex € Sand S — {x} =29).
= x ¢ S, (a contradiction).
= x € S'US. Accordingly, S € S'U S.
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Fromiandii we have S =S'US.

Definition (Boundary of a set):

Let (M ,d ) be a metric space and let S © M. A point x € M is said to be
boundary point of a set S if, and only if, for every open ball B),(x; r) contain at
least one point of S and at least one point of S¢, i.e. (B(x;r) NS # @ and
B(x;1) NS¢ # @), ie.(x €SN SO).

The set of all boundary points is called boundary set of S and it denoted by
0S. In fact; 3S = S n S¢.

Example:
In the Euclidean metric space (R, | |),letA =(-3,3), B=1Z, C = Q.
i 0A=AnA=[-33]n((-,-3]U[3,))={-3,3}.
ii. 0B=BNB°=7ZN Uy, [n,n+1]) =L
iii. dC=CnC°=RNR=R.
Example:
In the Euclidean metric space ( R?, || |), let;
A={(x,y):x*+y?<1} B={(x,y):x*+y*>1},
C={(x,y):x*+y* =1}
i. 0A=ANA°={(x,y):x*+y? <1} n{(x,y):x?+y%? =1}
={(x,y):x* +y* =1}.
ii. 0B=BNB°={(x,y):x*+y?=1}n{(x,y):x*+y? <1}
={(x,y): x>+ y* =1}.
iii. 0C=CnCc={(x,y):x2+y?2=1} n{(x,y): x> +y?>1}u
{(x,y):x?+y? <1} ={(x,y): x* +y* =1}.
Exercises:
Let (M ,d ) be a metric space and let A,B © M. Then:
1. 0A = @ if, and only if, A is both open and closed in M.
2. d(A°) = 0A.
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3. IfANB =0, then d(AUB) = A U dB.
4. If A" =B" = @ andif Ais closed in M, then (AU B)" = 0.

Definition (Bounded set):

Let (M,d) be a metric space. A subset S if M is called bounded if
S € By(x; r), for some r > 0 and some a € M.
Example:

In the Euclidean metric space (R,||), the set A =(—-3,5]U{7} is
bounded since we can find an open ball B(1;7) =(—6,8) such that
A € B(1;7), as shown in the following figure;

-3 5 i
,ﬁF E X i 13
‘:[ & - &
0 2 i ]
B(1;8)

Example:

In the Euclidean metric space ( R?, || |]),
theset A={(x,y) ER?: —1<x <1, —1 <y < 1} is bounded set since we
can find an open ball B((0,0);2) = {(x,y) € R?: x? + y? < 4} such that
A < B((0,0); 2), as shown in the following figure;

L

&

v

Theorem (Bolzano-Weierstrass):-

Let S be a bounded subsets of the Euclidean metric space ( R™, ||.||) and it
has infinitely many points. Then there is at least one point in R™ which is an
accumulation point of S.
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Remark: To simplify the idea of the proof, we shall give it in the Euclidean

space R, (i.e. whenn = 1).

Proof:

Since S is bounded in R, then we can find an open interval (—a,a) such
that S € B(0;a) = (—a,a) = S S [—a,a].

1. Subdivide [—a,a] into [—a ,0] and [0, a]. At least one of the subintervals
[—a ,0] or[0,a] contains an infinite subset of S. Denote such subinterval by
[ay, bi].

2. Bisect [a;, b;] and obtain a subinterval [a,, b,] containing an infinite subset
of S and continue this process.

3.In this way, a countable collection of closed subintervals [a,,b;],
la,,bs5], ..., [a,,by,], ... was obtained. The n™ closed interval [a,, b, ] being
of length b, — a, = a/2™ 1. Therefore, the length of [a,,, b,,] is approach
to zero as n — oo,

4.Let A={a;,a;,..,a,,..} and B={b;,b,,...,b,,..}. Since a; < by,
Vi = 1,2, ..., hence A is bounded above and Sup(A) is exist. Moreover, B is
bounded below and Inf (B) is exist, since b; > a;,Vi = 1,2, .... In fact, we
have;

a, <a, <--<a, <-<b, << b,<h

Therefore, Sup{A} = Inf{B} = x say, (as_an_exercise prove that). Notice

that, x may or may not belong to S.
Now, we shall prove that x is an accumulation point of S, i.e. we need to show
thatvVr > 0, B(x;r) NS — {x} # 0.

, : : .
Let > 0 = - > 0. By using a previous result;

a
2n—1

MeELtI—<L =2 <lsp —aq,=-2<L
2" " 4a 2 2
Thus, there exists a closed interval [a,, b, | has length less than % According,

x = Sup{A} = Inf{B},soa, <x < b, and;
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[a,,b,] € B (x,g) = (x —g,x +£) CBx;r)=(x—-rx+7).
But [a,, b,] contains an infinite subset of S. Therefore, B(x ;) contains an
infinite subset of S = B(x;r) NS #® = B(x;r) NS — {x} # @. Thus, for all
open 1-ball B(x;r) = (x —r,x + 1) we have, B(x;r) NS — {x} # @. Hence x

1s an accumulation point of S.

Theorem:
If x is an accumulation point of a subset S in the Euclidean space R", then
every open n-ball B(x ; r) contains infinitely many points of S .
Proof :By contrary, suppose there is an open n-ball B(x ; r) such that;
B(x;r)ynS—{x}={a, ,a, ,..,a, }.

Since a, ,a, ,...,a, € B(x;r), hence;
lx —a | <7, llx —axll <7,...llx —ap |l <7
1.
Put r' = EMm{IIx —aq |, llx—axll,....llx—a, ||} >0. We need to show

that, B(x;r)NnS — {x} = @.

Suppose that B(x;r') NS — {x} # 0
= Jatleasty € B(x;r') NS — {x}.
= y€B(x;r") and y € S — {x}.
= [lx—yl|<r" andy € S — {x}.
Sincea; EB(x;r)=|lx—q;||<r,V1<i<n
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But ' <||x —a;|| <r,V1<i<n.

Therefore, ||x — y|| <7’ <r andy € § — {x}.

= |lx—y||<r andy € S — {x}.

= yEB(x;r) andy € S — {x}.

=>y€B(x;r)nS —{x}.

>y€fa, ,a,,..,a,}
So,3 1<i<n 3y =a; and this contradicts the fact; a; € B(x;r"), for all
1 < i < n. Therefore, B(x;r') NS — {x} = ® = x not an accumulation point
of S (a contradiction). Thus, every open ball B(x ;r) contains infinitely many
points of S.
Remark:

The converse of the above theorem is not true in general. That is, if § € R"
is an infinite set of points, then S need not has an accumulation point. For
example, the set of integers Z is an infinite subset of R, but it has no
accumulation points, i.e. Z' = @.

Exercise:

Prove that every finite set S of R™ has no accumulation point.

Cantor Intersection Theorem:
Let{Q; ,Q, ,...,Q, , ..} be a countable collection of non-empty sets in the

Euclidean space R™ such that:

1. Qpyq € Qr,Vk=1,2,..

2. Qi isclosed,Vk=1,2,...and,

3. Q, is bounded .
Then the intersection Ny, Qj is closed and non-empty .
Proof : Let S =N;-; Q). Since Q) is closed setin R", V k=1,2,..., hence
S is closed set in R™ (by applying a previous result that state: the intersection of

any collection of closed sets is a closed set). We need only to show that, S # @.
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il

If Q is a finite set for some k = 1,2, ..., with |Q; | = n, then from 1 above
we have;

oo © Qpirr2 = ¢ c Qrte41 = 0 c Qk+e € " S Qy1 € Q S+ S Qy,

for some 1 < £ < n. But, our assumption states Q;, # @,V k =1,2,.... That
is the collection {Q; ,Q, ,...,0Qk , ..} ={Q1 ,Q5 , ..., Qx4p } is finite and
hence S =Ny—; Qx = Qx4+r #* 0.
Assume that each of @ contains infinitely many points, V k= 1,2, .... Let
A={x; ,xy , ., X , ...}, Where x;, €Qy,,V k=1,2,...Since Q; S Q,
V k=1,2,.., hence A € Q,. But Q; is bounded and infinite in R", so as
an application of Bolzano-Weierstrass theorem, there exists an accumulation
point say x of A in R"™. We will show that, x € S, i.e. S # 0.
Since x € R" is an accumulation point of A, then;
Vr>0,B(x;r)NA—{x}# 0

But Q. (V k=1,2,..) contains all (except (possibly) a finite number) of
the points of A = B(x;r) N Q, —{x} # 0,V k=1,2,...

= x€Q,Y k=1,2,...
But Q, is closed in R™and Q S Qy, hence x €EQy, V k=1,2,..
Therefore, x € S =Ny, Q) # .

Definition (covering):

Let (M ,d ) be a metric space and let S € M. A collection Q = {G;| i € I}
of a sets in M is called a covering of S if S CU,¢; G;. If G; is an open set in M
for all i € I, then the collection Q is called an open covering of S. If a finite
subcollection of (1 is also a covering of S, then this finite subcollection of () is
called a finite subcovering of S.
Example 1: In the Euclidean space R , the collection Q = {(n,n+ 2):n € Z} is

a countable open covering of R, as shown in the following figure:
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Example 2:
In the Euclidean space R, the collection () = {(%,%):n =2,3,..}is a

countable open covering of the open interval (0.1), as shown in the following

figure:
0 11 1 2 1
4 3 2 3
Example 3:

In the Euclidean space R?, the collection Q = {B((x,x) ;x)|x > 0} is an
open covering of the set S = {(x,y)|x > 0, y > 0}. Note that, The collection
Q is not countable. In Q = {B(x;x)|x > 0andx € Q}, then 2 is a countable

covering of S.
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Exercise:

Let W ={B; ,B,,..} denotes the countable collection of all n-balls
having rational radii and centers at points with rational coordinates. Assume
x € R" and S be an open set in R™ such that x € S. Prove that, there exists
B, € W suchthatx € B, C S.

Theorem (Lindelof covering theorem):

Let A be a subset of the Euclidean space R™ and let Q be an open covering
of A. Then there is a countable subcollection of (2 which also covers A.

Proof :

Let ¥ ={B; ,B, , ...} be the countable collection of all n-balls having
centers with rational coordinates and rational radii. Since () is an open covering
of A= ACUgeq S = Vx€EA, 35, €Q 3x€ S,.Since S, is an open set
in R™ and x € S, , so by applying the above exercise we have;

AB, e¥Y3x€ B, €85,.
There are, of course infinitely many such Biin W such that x € B, € S, . So,
we will choose only one of these open n-balls, for example the one of smallest
index, say m(x) = Min{k : x € By €S5,}= X € Bpyy) E Sy ...(1)
From above we deduce the following, Vx € A,3 Bpy(y) EY 3 X € Byy(y).

= A SUyxep By - (2)
Therefore, {By,(x)|x € A} is a countable subcollection of ¥ which also covers
A. From (1) and (2) above, we have;

A CUyeqy Bm(x) SUxea Sx -
Thus, {S, | x € A} form a subcollection of Q and an open covering of A. Since ,
Vx€A,3S, €Q (and hence 3 By, € VY corresponding to the open set S, )
such that x € By, & Sy. That is, there is 1-1 correspondence between
{Bm@lx € A} and {S, | x € A}. Therefore, as {By,(|x € A} is a countable
covering of A, we deduce that {S, | x € A} form a countable subcollection of £

which also covers A.
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Remark:

The Lindelof covering theorem states that, from any open covering of a set
A in R™ we can extract a countable subcovering of A. The Hine-Borel theorem
tells us that if, in addition, we know that A is closed and bounded, we can reduce

the countable subcovering of A to a finite subcovering of A.

Theorem (Hiene-Borel covering theorem ):
Let A be a closed and bounded set in the Euclidean space R™. If Q is an

open covering of A, then there is a finite subcollection of 2 which also covers A.
Proof:

Since F is an open covering of A, hence by Lindel6f covering theorem,
there exists a countable subcollection of Q , say ¥ = {I, ,I, , ... } also covers A,
i.e. A © Ugsq . We shall show thatam > 13 A € UL, I.

Now, consider for m > 1 the union S,,, = UL, I. Clearly, S,, is an open set of
R™ since it is a union of open sets I,I,,...,I,,, Ym = 1. Therefore,
S =R"—=S,, is closed Vm > 1. Define a countable collection of sets
{0, ,0Q, , ...} as follows:
1 =Aand Q,, =ANS5, YVm=>1.
We will show that Q,,, = @ for some m > 1, which implies that, A N S;;, = 0,
for some m > 1. This will giveas A € (§5)¢ = S;, = Up= I for somem > 1,
i.e. A € UyL, I for some m , and hence {I; ,I; , ..., I, } is a finite subcover of
A of , so, our aim is hold.
To do this, by contrary suppose that, Q,,, # @, ¥V m = 1. Observe that, the sets
Qmn, VYV m = 1 have the following properties:
i. Q; = A isclosed and Q,,, is closed set (since @,,, is the intersection of closed
sets A and S5,), Vm > 1.
ii. Oy 2Qn41 YVm=1(nfact:S,, S S m=1=>585, 2855, vm>1
=0, 20,.,Ym>1. But Q,, = ANnS5,Vm> 1.Therefore, Q,, € 04,

Vm = 1. Hence Q,;, 2 Qppy1, m=1).
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iii. Q; = A is bounded.
From Cantor intersection theorem, we have Ny,—; @y # 0, 1.e. IX € QL N Q, N
QzN.. #@.ButAd=0Q; thusix€ANQ,NQsN .. 0.
=3I x€EA3x€Q,,Vm=1 whereQ,, =ANS,,Vvm=1.
= I x€Ad3x¢S,=UlL I ,,Vvm=>1.
= I x€EA3x¢,Vk=>1=AZL UL I, this is a contradiction. Hence,
Qm =90 for some m = ACS,, = Uyl for some m = {I; ,I;,.., I}
forms a finite open subcovering of A contained of Q.

Compactness in metric spaces
Definition:

Let (M ,d) be a metric space. A subset S of M is called compact if every

open covering of S contains a finite subcovering.
Theorem:
Let S be a compact subset of a metric space (M ,d). Then:
1. S is closed and bounded .
2. Every infinite subset of S has an accumulation point in S.
Proof (1):
Proof S bounded in M:

Choose a point p in S. The collection {By, (p; k)| k = 1,2,3, ...} forms an

open covering of S, i.e. S =U;._; By (p; k). But S is compact, therefore there
exists a finite subcovering of S, ie. S CU}_; By (p;k). Since
Uy—y By (p; k) = By (p;n), hence S € By, (p;n) and S is bounded in M.
Proof S is closed set in M :
We know that S is closed in M if and only if S’ € S, i.e. if S contains all its
accumulation points. Consequently, S is not closed in M if, and only if, there
exists an accumulation points of S which is not belong to S, i.e. 3 y€S' 3
y € S. We want to prove S closed in M, so by contrary suppose S is not closed
in M, i.e. suppose that 3 an accumulation point y of S such thaty € S.
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Now, for every x € S, letr,, = 2d(x,y), where r,, > 0V x € S, since y € S. The
collection {By(x;n)|x €S} forms an open covering of S, ie.
S CU,es By (x;1.). But S is compact = 3 a finite subcover say;

By (x1;11), By (%25 12), oo, By (s 1), i.e. S SUR_; By (ks 7).
Let r = Min{r, ,1,,...,1,}. We will show that, By, (y;r) NS —{y} =0, i.e.
By(y;r) NS = @ (since by our assumption y & S) and this will contradict the
fact that y is an accumulation point of S. To do this we need to show that
By(y;r)n BM(xk;rxk) =@ fork=1,2,3,...,n.
let z € By (y;r), we will show that z ¢ BM(xk;rxk) forall k=1,2,3,..,n,
ie. d(z,xy) = 1y, . The triangle inequality gives as;

d(y,x) < d(y,z) +d(z,x)
=>d(z,xx) = dy,x) —d(y,z) =2r,, —d(y,z) > 21 — 7

= 2y, — Ty, = Tx

k Kk’

= d(z,x;) > T, > Z € BM(xk;rxk)
=z & Uy BM(xk;rxk) = By (y;7) N (U, BM(xk;Txk)) =0
But S CUR_; By(x;7,) = Bu(y;r)NS=0 = By(y;r)nS—{y}=0.

Therefore, y is not accumulation point of S (contradiction), Hence S is closed in

Proof (2):

Let T be an infinite subset of S. Want to show that: 3 x € S such that x is
an accumulation point of T. By contrary suppose that x is not accumulation
point of T forallx € S = V x € S 3 an open ball By,(x; ;) such that;

Bu(;r)NT —{x} =0
=By )NT =0 (iftxg&T)orBy(x;r ) NT ={x}(ifx €T)
= By (x; 1) contains at most one pointof TV x € S.
The collection {By(x;1.) |x € S} forms an open covering of S since

S € UyesBy(x;1). But S is compact, then I a finite subcovering say
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By (x1511), By (x5 12), oo, By (s 1), 1.6.S SUR_; By (xy;13). Since T € S =

T CUy_, By (x5 1) - (%). But By(xps1m)V(k=1,2,..,n) contains at

most one point of T, therefore (from (*) ) T is finite set (contradiction). Hence,

3 x € S such that x is an accumulation point of T

Remark:

i. In the Euclidean space R", each of properties (1) and (2) is equivalent to
compactness, i.e. In the Euclidean space R", the following three statements
are equivalent: S is compact in R™ & S is closed and bounded in R" &
every finite subset of S has an accumulation point in S.

ii. In general, in any metric space (M ,d), we have
a. S is compact in M = S is closed and bounded in M.

b. S is closed and bounded in M # S is compact in M.
c. S is compact in M & every infinite subset of S has an accumulation point
inS.

Exercise:

Consider the metric space Q (of rational numbers) of the Euclidean space
(R,].]) and let S consists of the rational numbers in the open interval (a,b),
where a and b are irrational. Show that S = (a, b) N Q is closed and bounded in
Q , but S is not compact in Q .

Theorem:

Let S be a closed subset of a compact metric space M. Then S is compact in

M.

Proof :

Let 0 = {G; |i€ I} be an open covering of S, i.e. S CSU;¢; G;. We show that
a finite subcollection of (1 is also cover S. Since S is closed in M = S€ is open
in M = QU {S§°} forms an open covering of M. But M is compact, therefore

3 a finite subcovering say {G; ,G;,, ..., G; ,S°} , i.e. M = (Ug_; G; ) U S. But
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CM =S8C(UgqG)USS. But S5NSC =0=5C (Ug, G =
{Gi,, Gy, ..., G; } is a finite subcovering of § = § is compact.
Theorem:

Let (S, d) be a metric subspace of a metric space (M ,d) and let X € S.
Then X is compact in S if and only if, X is compact in M.

Proof:

Suppose X is compact in S. Wanted: X is compact in M, i.e. wanted: every
open covering of X in M contains a finite subcovering. So, assume
Q = {G;|i € I} be an open covering of X in M, i.e. X € U;¢; G; and G; is an
opensetin M, Vi € I. Since, X =X NS S (Uije; G;) NS = U;(G; NS), hence
the collection Q' = {H; = G; N S|i € I} of open sets in S forms an open covering
of X in S. But X is compact in S, so Q' contains a finite subcovering say
{H; ,H,, .., H;_}. That is, X CUR_, H; =Up_; (G;, NS) = (Ug=; G;,) NS.
Therefore, X cU;_, G;, = {G;,G;,, ..., G; } is a finite subcovering of Q. Thus,
X 1s compact in M.

Conversely, assume X is compact in M. Wanted: X is compact in S, i.e. wanted:
every open covering of X in S contains a finite subcovering. Let Q' = {H;|i € I}
be an open covering of X in S, i.e. X € U;¢; H; and H; is an open set in S, Vi €
I. That is, for every i € I, there exists an open set G;in M such that H; = G; N S.
According to, X S U;e H; =Uig(GiNS)=(U;j;G;)NS, we have
X € Uje G;. That is, Q = {G;|i € I} forms an open covering of X in M. But X
is compact in M, so {) contains a finite subcovering say {G; ,G;,, ..., G; }, 1.€.;

XCcul G, =2X=XnSc (U}, G, )NS=Uk, (G, NS) =V} H.

Therefore, X SU;_, H;, = Q' contains a finite subcovering {H; , H;,, ..., H; }.
Thus, X is compact in S.

Example:
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Let ((0,1),]]) be a subspace of the Euclidean space (IR, | |). The interval

(0,%] is closed and bounded subset of (0,1) as a subspace of R. On the other

1, . : .. :
hand, (O’E] is bounded, but not closed in R, so it is not compact in R as an
application of Hiene-Borel covering theorem and according to the above
theorem (0, %] is not compact in (0,1) . This example is an illustration to the fact

that, the closed and bounded subset of a metric space need not to be compact.
Sequences in metric spaces
Definition:
Let (M,d) be a metric space and let Z* = {1,2,3,...} be the set of
positive integer numbers. Any mapping f:Z* — M is called a sequence in M.

Remarks:

i. A sequence in M assigns to each n € Z* a uniquely determined point
X, €M, 1ie.;
1-f(D)=x;eM
2-fR2)=x,eM

n->f(n)=x, €M
The points x4 , x5, ..., X3, ... are called the terms (elements) of the sequence
f in M. The term f(n) = x,, is called the n;y,-term of f.
ii. We will denote the sequence f:Z* — M by any one of the following
notations:

(tdnezt = (1 ,%z ) = (Xal € T¥) = (x,)

iii. We have to distinguished between the sequence (x,,) = (x,| n € Z*) and its
range, which is denoted by to be the set = {x,|n € Z*} = {x; ,x, ,...}.

Example:

In the Euclidean space R;
i. Consider the sequence (x,)=((-1D)"|ne€eZ*)=(-1,1,-1,1,..). The

range of the above sequence is T = {x,,|n € Z*} = {—1,1}.

ii. If b € R, the sequence (x,,) = (b, b, ...), all of whose terms are equal to b, is
called the constant sequence. The range of the above sequence is T ={b}.
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Example:
In the Euclidean space R, if (x,,) and (y,,) are sequences of real numbers

then we can define:

a. Sum: (x,) + (yn) = (X + yn)

b. Difference: (x,) — (v,,) = (x, — W)

¢. Multiplication: (x,,).(v,) = (X, ¥n)

d. Multiplication by a scalar: if c € R, c(x,,) = (cx,)

e. Quotient: (x,)/(y,) = (x,/y,) provided that y,, # 0 foralln € Z™.

For example, if (x,) = (2n) =(2,4,6,...) and (y,,) = ( ) =(1,

l\)lb—\

%,. ) be

two sequences of real numbers, Then;

2n?+1 9 19

) (3:_:_;--->-

2° 3

1. (2n)+( )—(2n+ )—(

2. (2n) = () = (2n—) = (2n ——>—<37 7o)

w

L (2n).C) = (2n.0) = (2) =(2,2,2,..).
. 3(2n) = (6n) = (6,12,18, ...).
. (2n)/ () = (2n/2) = <12/—’;> = (2n?) = (2,8,18,...).

Note that, if (1+(=1)")=1(0,2,0,2,...), is a sequence of real numbers,

n A

therefore, (2n)/(1 + (—1)™) is not defined since some of the terms of the
sequence (1 + (—1)") are equal to 0.
Definition:

In the Euclidean space R, a sequence (x,) is called bounded above if
3 M > 0 such that |x,| <M, Vn €Z*, while it is called bounded below if
3N > Osuchthat N < |x,|, Vn € Z*.

Example:

N

The sequence of real numbers (%) =(1, ,% , ... ) 1S bounded above since
Ja positive real number 2 such that |%| <2,Vn €Z". As well as, (%) is bounded

: . 1
below since Ja positive real number 0 such that 0 < |;| , Vn € Z*.
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Definition:
In the Euclidean space R , a sequence (x,,) is called increasing if;
Xy < Xppq VN ELT;
while it is called decreasing if, x,, = x,.; Vn € Z*.

Example :

In the Euclidean space R, a sequence (%) is decreasing since;
Xn+1 =$<%=xn, vneL.
The sequence (n) = (1,2,3, ...) is increasing since;
X, =n<n+1=x,,,, Vn€eZ.

The sequence ((—1)"|n € Z*) =(—1,1,—-1,1,...) is neither increasing nor
decreasing.
Definition (Convergent sequence in a metric space):

A sequence (x,,) of points in a metric space (M, d) is said to be converge if
3 a point p € M with the following property:

Ve>0,3aANE€EZ > d(x,,p) <eVn=N...(%

In this case, we say that (x,,) is converges to p in M and we write;

Xn, = P asn — 0 or x, — p.

n—-oo

If there is no such p in M, the sequence (x,,) is said to be diverge.
Remark:
1. The above definition of convergence implies that;
X, >pasn »>o & d(x,,p) — 0asn — oo,
i.e. a sequence (x,) converges to p in M if, and only if, the sequence
(d(x, ,p)) of positive real numbers converges to 0 in R.
2. The convergence condition (*) can be written as;
Ve>0,3aAN€EZ" > x, €B(p; €),Vyn=N.
i.e. the open ball B(p ; €) contains all the terms of the sequence (x,,) except
a finite number of terms x;, X,,... and xy_; as shown in the following

figure:
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3. The greatest integer of x denoted by [x] is defined as follows:
[x] = { X if x€L
*I'= 1t henearestnt egemo.tox fronthel eftif x € Z~
In fact, [0] =0, [0.79] =0, [1] =1, [1.9] = 1. In general, [x] <x, V x €
R,also[x]+1>xV x€R
Example :
In the Euclidean metric space R , the sequence (%) = (1,%, ... ) converges to
DER.
Solution: Lete > 0. Wanted: INE€ZT 5 neN = |%— 0| < E.
For a moment assume that;
|1—0| <€ =>|l| <e>D-<e=-<n=n>-.
n n n € €
: 1 + 1 1
So, if we choose N = [Z]-l_l EZ",thenVvn>N = n=> [Z]-l_l =>n>;
=>1<e=>|1|<e = |1—0| <eE.
n n n
Therefore, (%) converges to 0 in R.

Theorem:
A sequence in a metric space (M , d) can converge to at most one point in M.
Proof:
Assume that x,, > pas n - o and y, - q asn = o in M. We will prove

that p = q. By contrary suppose p # q and let e = d(p,q) > 0. As x,, > p =
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3N, € Z* such that d(x,,p) < g, vn > N;. Moreover as y, - q = AN, € Z*
such that d(y,, ,q) < % , Vn = N,. The triangle inequality gives us;

e=dp,q) <dpx) +d(xn, ) < +-=e=>e=d{p,q <€
and this is a contradiction. Therefore p = q.

Remark :

If a sequence (x,,) is converges in a metric space M, the unique point to
which it converges, say p, is called the limit point of the sequence and it is
denoted by, p =11 g, X,

Remark :
The convergence or divergence of a sequence depends on the underlying

space as well as on the metric as we illustrate in the following:

Example 1:
From a previous example, we know that the sequence (%) is converge in

the Euclidean space R to 0. The same sequence is diverge in the Euclidean
subspace = (0,1] , since 0 & S.
Example 2:

1, . : : :
The sequence (;) is converge to 0 in the Euclidean metric space (R, | |). The
same sequence does not converge to 0 in the discrete metric space (R,d). In

: 1 1
fact, if we suppose that i 0 asn—-ooo=d (; ,0) — 0 as n - oo, But

% #0,vn=1,23 ..and d: R X R — R is the discrete metric, 1.e.

_ (0 ifx=y
d(x,y)—{l if x#+y

Therefore, d (%,O) =1vn=1,273,.. Hence d(%,O) =1»0asn - oo,

. . 1 : :
this is a contradiction . Thus ~ 0 as n = oo in the discrete space (R, d).
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Exercises:
1. In the Euclidean space R, let (x,) and (y,) be two sequences such that

X, = p andy, — q asn — . Prove that the following :

a. Sum: (x,) + (y,,) converges to p + q.

b. Difference: (x,,) — (y,,) convergesto p —q.

c. Multiplication: (x,).(y,) converges topq.

d. Multiplication by a scalar: if € R, c(x,) converges to cp.

2. In the Euclidean space R, prove that the following :

a. If 0< y, <x, for all n € Z* and if (x,) converge to 0, then (y,)
converge to 0.

b. Let (x,) be decreasing and bounded below. If T ={x,|n € Z*} is the
range of (x,,), then (x,,) is converge to Inf T (Give an example to explain
that).

c. Let (x,) be increasing and bounded above. If T = { x,, | n € Z*} is the
range of (x,), then (x,,) is converge to Sup T (Give an example to explain
that).

Theorem:

In the metric space (M, d), assume that (x,,) is a convergent sequence such
that x, > pandletT = {x; ,x,, ...} be the range of {x,,}. Then:

i.T is bounded.

ii p is an adherent point of T

Proof (i):

Wanted: T is bounded, i.e. 3 an open ball By, (p; ) such that T € By, (p; 7).
Lete =1.Since x, »>pasn— o, henceaIN € Z*3d(x,,p) <1,Vn=N
=>x, €EBy(p;1))Vn=N= x, €By(p;1) vn=N.

Letr =1+ Max{d(p,x,),d(p,x3), ..., d(p,xy_-1)}.
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In fact, if m>N, d(x,,p)<1<r =x,€By(p;r) and if n<N,
d(x,,p) < Max{d(p,x,),d(p,x3), ..., d(p,xy_1)} <71 = x, € By(p;r) for
allm>1=T < By(p;r). Hence T is bounded in M.

Proof (ii):

Wanted: p € T (i.e. wanted: V1 >0, By (p;7)NT # 0).

Letr > 0. Since x, > pasn—>o =>3IN€EZ" 3 d(x,,p) <r,vn=N.

= x, EBy(p;r),Vvn=N. But x, ETV n=>N=By(p;r) NT #0=>p is

an adherent point of T.

Remark:

1. If (x,,) is a convergent sequence in a metric space M such that x,, = p and let
T = {x;,x,, ...} be the range of (x,,), the point p may not be an accumulation
point of T. For example, in the Euclidean space R, the sequence
(x,) =(1,1,2,2,2,...) is converge and converges to 2. The range of (x,),
T = {1,2} is a finite subset of R which has no accumulation point in R.Thus,
2 is not an accumulation point of T.

2.1f x,, » p and T is infinite set, then p is an accumulation point of T since

every open ball will contain infinitely points of T.
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Theorem:

Given a metric space (M ,d) and a subset S € M. If a point p € M is an
adherent point of , then there is a sequence (x,,) in S which converge to p.
Proof:

Since p € M is an adherent pointof = Vr >0 By(p;r) NS # @.

Let = %, n=1,23,.= By(p;r)NS+ @ VneZ" Thus, when:

n=1=>B,(p;1)NS=#0=>3x, € By(p;1) NS =x; €Sandd(x;,p) <1
n=2=>Byp;2)NS+0=>3x, € BM(p;Z)nS:>x2ESandd(xZ,p)<%

n=3=>By(P;3)NS+*0P=>3Tx; € BM(p;B)nS:xgESandd(x3,p)<§

Therefore, Vn € Z* 3 a point x,, € S with d(x,,p) < % Thus, we have a
sequence (x,) in S satisfied d(x,,p) » 0asn — o. Therefore, x, = p as
n — oo,

Definition (Subsequence):

Let f:Z* — M be a sequence {(x,) in M, where f(n) = x,, Vn € Z* and
let k: Z* — Z* be an order preserving function, (i.e. ¥m,n € Z*, if m < n, then
k(m) < k(n)). Then the composition f o k:Z* - M which is defined by,
fok(n)=f (k(n)) = Xk(n) 18 called a subsequence (xy () of (xy).

Example:

Consider the sequence f = (%) in R and let k:Z* — Z*be the order
preserving function that defined as, k(n) = 2™, Vvn € Z*. Then f o k = (Zin) isa

—), (=) is a

2n+1

subsequence of (%). As well as each of the sequences (i), (

, ... ) 1s not a subsequence of

) )

W R
O |r
vl R

subsequence of (%). But the sequence (%, 1,%,

).

n

Exercise: In a metric space (M d), prove that a sequence {x,} converges to p

if, and only if, every subsequence (xj,)) convergestop .
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Cauchy sequences:

Definition:

A sequence (x,) in a metric space (M d) is called a Cauchy sequence, if it
is satisfy the following condition:

Ve>0,IN€EZ*> d(x,,x,) <e,Vmmn =N.

Example:

In the Euclidean space R, the sequence (x,,) = (%) is a Cauchy sequence.
Sol :
Lete > 0. Wanted: AN € Z* 3 d(x,,x,) <€, Vm,n = N.
So, assume that there exists such N, satisfied;

|y, — x| <€,Ym,n = N.

1 1 1 1 1 1
=l =l = L2 = R+ R = R+ =3l =

1 1
—+=,
m n
1 1
= |xm—xn| S;‘FZ
2

: 11 1 _1 11
Since,n,m > N=—<- and - < —, hence|x,, —x,| < -+ =
m T N n= N N N

So, if we choose the positive integer N = E] + 1, that satisfied;
N>2slcisloe
e N 2 N
Therefore, |x,,, — x,| < % < €,Vm,n = N and (x,) is a Cauchy sequence.

Exercise:

Let (S,d) be a metric subspace of a metric space (M,d). Prove that, a
sequence (x,) is a Cauchy sequence in S if, and only if, (x,) is a Cauchy
sequence in M.

Theorem:

In a metric space (M, d), every convergent sequence is Cauchy sequence.
Proof: Let (x,) be a convergent sequence in M and x, = p with p € M.
Wanted: (x,) is a Cauchy sequence in M. Let € > 0. Wanted: AN € Z* 5

d(x, ,x,) <€e,VYmmn = N.
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Since €>0 and x,»>p =3INE€EZ'> d(xn,p)<§, vn = N. So, if
m = N, then d(x,,,p) <§. Now, if n = N and m > N, by the triangle
inequality we have:

€

d(xy , %) < d(x,,p) +d(xy,,p) < >

€
+§<e:> d(xXy, , xm) <€

Thus, (x,,) is a Cauchy sequence in M.
Example:
The converse of the above theorem needs not to be true in general. For

example, the metric subspace (S = (0,1],].]) of the Euclidean metric space

(R,|.]). The sequence (x,,) = (%) is a sequence of points in S. We know that,

(%) is a Cauchy sequence in R, and % — 0. Thus, (%) is a Cauchy sequence in S,

while it is diverge in S since 0 € S.

Complete metric space:

Definition:
A metric space (M, d) is called complete, if every Cauchy sequence in M
is converge in M. A subset S of M is called complete metric subspace of (M, d),

if § 1s complete as a metric space.

Example:

The Euclidean space R¥ is complete, (k = 1).
Proof: Let {x,) be a Cauchy sequence in R¥. Wanted, (x,,) is a convergent
sequence in R*. Wanted: 3p € R* 3 x,, - p.
Let T ={x, : n € Z*} be the range of the sequence (x,). There are two cases
to be discussed:

The first one, if T is finite, then all except a finite number of the terms of the

sequence (x,) are equal and hence (x,,) is converge to this common value. This

show that R¥ is complete in this case.
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The second one, if T is infinite. We will use the Bolzano-Weierstrass theorem
to show that T has an accumulation point p € R¥, and then we show that
x,, = p. To do this, we need first to show T is bounded set in R¥.
So, let € = 1. Since {x,,) is a Cauchy sequence in R¥, hence;
INEZY S ||x, —x,|| <1,vn,m =N.

Thus, if n = N we have ||x,, — xy|| < 1. Let;

r' = Max{||x.||, [l , ..., lxy ||} and r = 1 + 7.
However, if 1 <n <N, we have d(x,,0) = ||lx,|| <r' <r. As well as, if
n > N, we have d(x,,, 0) = |lx,|| < llx, — 2yl + llxy || < 141" = r. That is;

x, €EB(0;r) VneZ =T < B(0;r).

Therefore, T is bounded set in R¥.
Now, in our second case T is infinite and bounded, so from Bolzano-weierstrass
theorem, T has an accumulation point say, p € R¥. We need only to show that,
Xn = P.
Lete > 0. Wanted: AN € Z* 3 ||x,, — pll < &,Vn =N.

Since € > 0 and (x,,) is a Cauchy sequence in R¥, hence;
€
AN €ZY 3 ||lx, — xpll < E,Vn,m >N
Since p is an accumulation point of T, hence B(p; %) contains infinitely many
points of T and there is at least a point x,,, withm = N such that x,,, € B(p; %),
ie. ||lx, —pll < g By the triangle inequality, forn > N, we have;
1 =PIl < llxn = Xl + 12t = pll <S+> =€ 2 |l —pll <€

Therefore, x,, —» p and R is complete.
Example:

Forn > 1, The space (R", d) with the metric d: R™ X R" — R that defined
as;

d(x,y) = Max{|x; —y1l,lxz = y2l, ) [0 — yul}s

forx = (x1,%2, .., %), ¥V = V1, Y2, ---» Y¥n) € R", is a complete metric space.
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Proof: Let (x,,) be a Cauchy sequence in R" with respect to the metric d.

Wanted: 3 p € R" 3 x,,, = p with respect to the metric d.

Let € > 0. Since (x,,) be a Cauchy sequence in R" with respect to the metric

d=> 3aNE€eZ" 3 d(x,,,x,) <eVm,r >N, where x,, = (x} ,x2,..,x1) ,

x, = (xL,x2,..,x") € R™.

Since, form ,r = N, d(x,,,x,) < €;

= Max{|xm — x7 |, [xg = %71, ) X — X7} <€

= xh —xt <e,|x3 —x?| <e€,..,|xt —x| <e

= (x}1), (x2),..,(x*) are Cauchy sequences in R with respect to the

Euclidean metric |. |: R = R. But the Euclidean metric (R, |.|) is complete (see

the above example). Thus, there are p;,p,,..,P, € R such that x} - p;,

X2, > py,..., xI > p,. Putp = (py, 0y, ..., Pn) € R™. As an exercise, show that
X = (X X5 s e, X30) = (D1, D2, s Pn) =P = Xy = p in (R, d).

Hence, (R™, d) is complete.

Continuous functions:
Definition:

Let (S,ds) and (T ,dr) be metric spaces and f:S — T be a function. The
function f is said to be continuous at a point p € S if,
Ve>0,36>0(dependon e andp) 3

ds(x,p) <68 = dr(f(x),f(p)) <e.
Or equivalently: V e > 0,3 § > 0 such that f(Bs(p; 6)) S Br(f(p); €).
We say that, f is continuous on a set A € S if, f is continuous at every point of
A.
Remark:

If p is an isolated point of S, i.e. p € S' N S, then every function f: S > T
defined at p will be continuous at p. To explain that: let € > 0. Sincep € S'N S,
hence 36§ >03Bs(p;)NS—{p}=0=Bs(p;6) NS = {p}. Thus,

Bs(p; 6) = {p}. In fact, f (p) € Br(f(p); €), so;
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f(Bs(p; 8)) = f({p}) = {f ()} € Br(f(p); €).
Therefore, f is continuous at p.
Theorem:

Let f:S — T be a function from a metric space (S,ds) to another metric
space (T ,dr), and assume that p € S. Then f is continuous at p € S if, and
only if, for every sequence (x,) in S converges to p, the sequence (f(x,)) in T
converges to f(p), i.e. i g, f(x,) = f(rll_i)ogrxn).

Proof :

Suppose that f is continuous at p € S and let (x,,) be a sequence in S converges

to p. Wanted: the sequence (f (x,)) converges to f(p).

Let € > 0. Wanted: 3N € Z* 3 dr(f(x,), f(p)) <€Vn = N.

Since f:S — T is continuous at p € S = 3 § > 0 such that if x € S with,
ds(x,p) <68 =dr(f(x).f() <€ ... (1)

Since § >0 and x,, » pin =3I N €Z*3d,(x,,p) <8 Vn = N.From (1)

above, dr(f(x,),f(p)) <€ Vn = N. Therefore, (f(x,)) in T converges to

f ().

Conversely, suppose that for every sequence (x,) in S converges to p, the

sequence (f (x,)) in T converges to f(p). Wanted: f is continuous at € S .

By contrary, suppose that f is not continuous at p € S = 3 € > 0 such that

Vv § > 0,3 x € S such that;

ds(x,p) <6 anddr(f(x),f(p)) = €.
Let & =% ,n€Z*. So;
ifn=1=8=13x €S 3 ds(xy,p) < landd;(f(x1),f(p)) = €
ifn=2=§= %,EI X, €S 3 dy(xy,p) <% andd(f(xp), f(p)) = ¢
ifneZ*=6= %,EI X, €S 3 di(x,,p) < % anddr(f(x), f(p)) = €.

Therefore, we will obtain a sequence (x,,) in S such that;
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dy(xn, p) < =, but dr(f (), f(P)) Z €.

That means, (x,,) is sequence in S converges to p € S, but the sequence (f (x,,))
in T is not converges to f(p)and this is a contradiction. Thus, f:S - T is
continuous atp € S.

Theorem:

Let (S,ds), (T,dy) and (U,dy) be metric spaces. Let f:S - T and
g:T — U be functions, and let g o f:S — U be the composite function defined
on S by;

gof(x)=g(f(x)), forx €S.
If f is continuous at p €S and g is continuous at f(p) €T, then go f is
continuous at p.
Proof: Let € > 0. Wanted: g o f is continuous at p € S, i.e. wanted, 36 > 0
such that;
ds(x,p) <68 =dy(g(f(x)),g(f(P))) <e€
Since e > 0 and g:T — U is continuous at f(p) = 36; > 03
dr(v,f(0)) <81 = dy(g(), g(f ®)) <€ .....(1)

Since §; > 0and f:S — T is continuous at p = 36 > 0 3;

ds(x,p) <& = dr(f(0), f(P)) <81 e (2)
Form (1) and (2) above we have;

ds(x,p) <& = dr(f(0), f(P)) < 81 = dy(g(f (), g(f (P))) < €.
Therefore, g o f is continuous at p € S.

Remark:

Let f: X — Y be a function froma set X intoasetY andlet AC X,BCY.
Then:

L flA)={yeYly=f),xeAd}={f(x) eY|x € A}
2. f'B)={x€X|f(x) EB}

3. fT1If(A)2Aand f71f(A) = A & fis onto.

4. ffY(B) S Band ff 1(B) =B & f is one-to-one.
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Theorem:
Let (S,ds) and (T ,d;) be metric spaces and let f:S — T be a function.

Then:

1. f is continuous on S if, and only if, f~1(B) is an open set in S for every

openset BinT.
2. f is continuous on in S if, and only if, f~1(B) is a closed set in S for
every closed set Bon T.
Proof:
For _(1): Suppose that f is continuous on S and let B be an open set in T.
Wanted: f~1(B) is an open set in S, i.e. wanted: each point in f~1(B) is an
interior point of f~1(B).
Letp € f~1(B). Wanted: 36 >0 3 Bg(p;6) € f~1(B).
Since p € f~1(B) = f(p) € B. But B is open set in T = f(p) is an interior
pointof B=3€ >0 3 Br(f(p);€) € B ...(*)
Since € > 0 and f:S — T is continuous at € S = 3 § > 0, such that;
f(Bs(p; 8)) € Br(f(p);€)
= T f(Bs(; 8)) € fH(Br(f(p); ©))
But Bs(p; 8) S f~'f(Bs(p; 6)) = Bs(p; 8) € fH(Br(f(p);€)) ... (+ 2)
From (x) we have, f~*(Br(f(p);€)) € f~1(B) ... (*3)
From (* 2) and (* 3), we have Bs(p; 8) € f~1(B). Thus, f~1(B) is an open set
inS.
Conversely, assume that f~1(B) is open in S, for every open set B in T.
Wanted: f is continuous on S.
Letp € S. Wanted:f is continuous at p € S. Let € > 0. Wanted:
36>0 35 f(Bs(p;6)) < Br(f(p);e).

Since Br(f(p); €) is open set in T containing f (p), hence f~1(B(f (p); €)) is

open set in S containing p, i.e. p € f ‘1(BT (f (p); e)) = p is an interior point of

B (FP);€)) = 36> 0 3 Bs(;8) € £ (Br(f(0); ©):
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= 38>0 3 f(Bs(p;8)) € ff(Br(f(0); ©)).

But, ff "' (Br(f(p);€)) S Br(f(p);€) = f(Bs(p; ) € Br(f(p); €). Thus f
is continuous at p.
For (2): Suppose f is continuous on S and let B be a closed set in T. Wanted:
f~Y(B) is aclosed setin S, i.e. wanted: S — f ~1(B) is an open set in S.
Since B is closed in T = T — B is open in T. But f is continuous on S = from
part (1) above , f “1(T — B) is an open set in S. Since;

fAT=-B)=f"T)-fB)=S-f(B).
=S —f"1(B)isanopensetinS = f~1(B) is aclosed setin S.
Conversely, assume f~1(B) is closed in S for closed set B in T. Wanted: f is
continuous on S.
Let A be an open set in T. Wanted: f~1(A) is open in S, (i.e. we will use part (1)
above to show our aim). Since A is open in T =T — A 1is closed in T =
f~I(T — A) is closed in S, (this implies from our assumption). Since;
fFUT-A)=S—f1A)=S5S—-f1(4) isclosedin S.

=S5 —(S—f"1(4)) isopeninS.

ButS — (S—f71(4)) = f1(4) = f~*(A) is open in S. Thus, f is continuous
onS.
Theorem:

Let f:S — T be a continuous function from a metric space (S, ds) into a
metric space (T ,dr). If X is a compact subset of S, then f(X) is compact subset
of T, in particular f(X) is closed and bounded .

Proof: Let {G;|i € I} be an open covering of f(X), i.e. f(X) SU;¢; G; , where
G;isopeninT, Vi € I. Wanted: {G;|i € I} contains a finite subcover of f(X).
According, f(X) CU;¢; G;, we have f1(f(X)) € f~1(U;g G)).

Since, X € f~1f(X) and f ™' (Uje; G;) =Vie; f71(G;), hence X SU;e; f7H(GY).
But G;is openin T and f is continuous on S, therefore f~1(G;) is open in S,

viel = {f1(G)|i € I} froms an open covering of X. But X is compact in S
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= 3 a finite subcover of {f "1(G,)|i € I} for X say {f~1(G,), ..., f~1(G,)}, i.e.
X SUL, f71(6) = £ € F(URy £71(6)) =Uy FF (G,

But ff71(Gy) € Gy, s0 UL, ffH(G) SV, G = f(X) SULL, G;.

= {G;:i=1,..,n} forms a finite subcover of {G;|i € I} for f(X). Hence,
f(X) is compact in T and from a previous result, we implies that f(X) is closed

and bounded in T'.

Complex valued functions and vector valued functions:
Definition:

Let (S,ds)be a metric space and let f:S — C and g:S — C be complex
valued functions. The sum +g:S — C, the difference f — g: S — C, the product

f.g:S — Cand the quotientf / g +S — Care defined respectively by:

Lftgl)=f(x)tgkx), VxeSs.
2. f.g(x) =f(x).g(x),Vx €S.

3. f/g (x) = f(x)/g(x), Vx € S such that g(x) # 0.

Exercise:

Let (S,ds)be a metric space and let f:S — C and g:S — C be complex

valued functions. If f and g are continuous at p € S, prove that;
f+9,f—g,f.g:S — Care continuous functions at p.
Definition:

Let (S,ds)be a metric space and let f: S — R™ and g:S — R" be vector
valued functions. The sum f + g:S = R", the scalar product a.f:S — R",
where a € R, the inner (or dot) product f.g:S = R™ and the norm ||f]]: S = R
are defined respectively by:
1.f+g(x)=f(x)+gkx),Vx €S.
2.a.f(x) =a.f(x),Vx €S.

3.f.9(x)=f(x).g(x),Vx €S.
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4. IF I = [If (Oll, vx € S.

Exercises:
1. Let (S,ds)be a metric space and let f:S —» R™ and g:S = R" be vector
valued functions. If f and g are continuous at p € S and a € R, prove that;
f+g,af,f.glfll:S— R"are continuous functions at p.
2. Let (§,dg)be a metric space and let f: S = R™ be a vector valued function
defined by, f(x) = (f;(x),fo(x),..., f(x)), for x €S. Prove that, f is
continuous at p € S if, and only if, f;:S = R is continuous at p, for all

i=1,2,..,n.

Bounded functions:
Definition:

A function f: S — R" from a metric space (S, dg) into the Euclidean space
(R™|I. 1), is called bounded on S, if there exists a positive real number M > 0,
such that;

lfColl < M,vx €S.
Or equivalently: f is bounded if, and only if, f(S) is bounded subset of R".
Theorem:

Let f: S — R™ be a function from a metric space (S, ds) into the Euclidean
space (R™, ||.]]). If f is continuous on a compact subset X of S, then f is
bounded.

Proof: Since f is continuous on X and X is compact, then f(X) is compact as a
metric subspace of R™. So, f(X) is compact subset of R™ and as an application
of a previous result f(X) is closed and bounded. Therefore, f is bounded.
Remark:

If f:S — R s areal valued function which is bounded on X € §, then f(X)
is bounded of R = f(X) is b is bounded above bounded above and bounded
below = f(X) has Sup(f(X)) and Inf(f (X)) =

Sup(f(X)) < f(x) < Inf(f(X)),Vx € X.
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Exercise:

Let f:S — R be a real valued function from a metric space (S, dg) into the
Euclidean space (R, |.|). Prove that, if f is continuous on a compact subset of S,
then there exist two points p,q € X such that;

f() = Inf(f(X)) and f(q) = Sup(f(X)).
Theorem:

Let f be defined on an interval S of R. Assume that, f is continuous at a
point ¢ in S and that f(c) # 0. Then, there is an open ball B(c; §) such that
f(x) has the same sign as f(c) in B(c;6) N S.

Proof:
Suppose that f(c) > 0. Let e = %f(c) =€e>0.

Since € > 0 and f is continuous at c € S = 3 § > 0 such thatif x € S and;
lx—cl<6 = |f(x)—f(o)]| <e.

Therefore, if x € B(c;6) = —e < f(x) —f(c) <e

= fle)—e<f(x) <f(c) +¢

> £(0) = 2f(€) < f(2) < f(©) +f(©);

=0 <-f(c) < f(x) <2 f(c), since f(c) > 0;
= f(x)>0.
Therefore, f(x) has the same sign as f(c) in B(c; &) N S. The proof is similar if

(c) < 0, except that we take in this case € = — % f (o).

Theorem (Bolzano s theorem for continuous functions):
Let f be a real-valued and continuous function on a compact interval [a , b]
in R, and suppose that f(a) and f(b) have opposite signs , i.e. f(a)f(b) < 0.
Then, there is at least one point ¢ € (a, b) such that f(c) = 0.
Proof:
For definiteness, assume that f(a) > 0 and f(b) < 0. Let;
A={x|x€[a,b]and f(x) = 0}.
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Since a € [a,b] and f(a) >0=>a € A=> A+ @.Since, AS[a,b]=>x<h,
Vx € A = b 1s an upper bound of A = Sup A exists. Let ¢ = Sup A.

Since f(b) < 0 = b ¢ A and from the above theorem, there is an open ball
B(b; r) such that f(x) has the same sign as f(b) in B(b;r) N [a, b].
= f(b —g) <0=>0b —% ¢ A and it is also an upper bound of A.

= c=SupA<b,since b —%is an upper bound of A with b —§< b.
=>a<c(sincea € A)andc < b.

2>a<c<b = ce€(a,b). Wewill show that, f(c) = 0.
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If f(c) # 0, then from the above result, there is an open ball B(c; §) such that
f(x) has the same sign as f(c¢) in B(c; §) N [a, b].
If f(c) > 0, then there are points x € A such that x > ¢ at which f(x) > 0 and

this is a contradiction since ¢ = Sup A.
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If f(c) <O, then ¢ —g is an upper bound for A since f(c —g) < 0. But

8 .
c=Sup A, hencec < c — > (contradiction).
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Thus, there is at least a point ¢ € (a, b). Such that f(c) = 0.
Uniform continuity:
Remark:

Firstly, let us recall the definition of continuity:

Let f:S = T be a function from a metric space (S, dg) into a metric space
(T,dr) and let A S S. Then, f is called continuous on A if, the following
condition is hold:

Vp€EAandV € > 03 a § > 0 (depending on p and on €) such thatif x € A
and ds(x,p) <8 = dr(f(x),f(p)) <e.

In general, we cannot expect that for a fixed € > 0 the same § > 0 will serve for

every point p in .

Definition (Uniform continuity):

Let f:S — T be a function from a metric space (S, ds), into a metric space
(T ,dr). Then f is said to be uniformly continuous on a subset A of S, if the
following condition holds:

V € >03a 6 > 0 (depending on €), such that if x,y € A and,
dS(ny) <§ = dT(f(x)lf(y)) <e.
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Theorem:

Let f:S — T be a function from a metric space (S, ds), into a metric space
(T ,dy). If f is uniformly continuous on S, then f is continuous on S. But the
converse needs not to be true in general.
Proof:

Suppose f is uniformly continuous on S. Wanted: f is continuous on S. Let

€>0and p €S, wanted: 3a § > 0 (depending on p and on €) such that if

x € Sand ds(x,p) <8 = dr(f(x),f(p)) <e.

Since € > 0 and 3 a 6§ > 0 (depending on €) such that if x,y € S and
ds(x,y) <d = dT(f(x),f(y)) < €...(*). Thus, if we take y = p, then ()
becomes, if x € S and ds(x,p) < 8 = dr(f(x),f(p)) < € = f is continuous
atp € S = f is continuous on S.

Example:

Let f be real-valued function define on R by f(x) = x2, Vx € R. We will
show that f is continuous on R and f is not uniformly continuous on R:

For f is continuous on R: Let p € R. Wanted: f is continuous at p. Let € > 0.

Wanted: 3 a 0 < § < 1 such that if;

Ix—c| <& = |fx)-f(p)l<e
As we know, |f(x) — f(p)| = |x? —p?| = |(x — p)(x + p)|
=[x —pl |x +pl

If we suppose, [x —p| < § = |f(x) — f(p)| < b|x + p|

= |f(x) = f)] <6(x| +IpD ...(x 1)
Since § <1 = |x —p| < 1.But ||x| — |p|| < |x—p|

= ||x|—|p||<1=>—1<|x|—|p|<1
From |x| — |p| <1= x| <|p|+1..(x2)
From (* 1) and (* 2) we have,

= f() = f)I <@+ Ipl+|pD =61+ 2|pl)
= 1f(x) = f) <61+ 2|pl)

— — Dr. Hana' M. Ali




M 331 (Mathematical Analysis(i))

€

(1+2lpl) 1)
Therefore [x —p| <8 = |f(x) — f(P)| = [x* = p*| = |(x — p)(x + p)|
=[x =plIx +p)| < 6l(x +p)| < 6(x| + |p)) <@ + |pl + IpD)
= &6(1+2[p))
= |f(x) = f(P)| < 6@+ 2|p]) ... ()

€
(1+2lpl)’

So we can choose § = Min{

Now,if=1=6§<

* _ € € _
Therefore from (*)= |f(x) — f(p)| < <1+z|p|'( <1+z|p|) =¢

€

And,if§ = = from (*) = |f(x) ~ f(p)| <e.

Therefore, f is continuous at p € R = f 1is continuous on R.

Exercises

(1): Prove that f(x) = x?2 is not uniformly continuous on R.

(2): Prove that f(x) = x? is uniformly continuous on 4 = (0,1].
Proof (1):

We need to prove, f(x) = x? is not uniformly continuous on R, i.e.

wanted: 3 p €A and3 e >0,V § > 0if x,y € A and,

|x =yl <8but [f(x) = f(P) > €..(%).
Let € = 1, and suppose we could find a § > 0 to satisfy the condition of

11,8 1,86
|x_p|—|§—(g+;)|—g+5<6.
1 1 1) 1 1
But If(x)_f(p)l = |(E)2_(§+E)2| — |_(E)2_1| :(E)2+1>1-

= |f() - fOl<e

Thus, f(x) = x? is not uniformly continuous on R.

Proof (2):
Lete > 0, take § = g Therefore, if we suppose that |x — y| < &
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= ) = fO = 1x* =y = |[(x = »I(x + 2| < 8l(x +y)| < 26,
sincex,y EA=(0,1landx+ y<2=|f(x)—f(y)| <26 =2

= f() - fOI<e

Since & =§ depends on € only, therefore f(x) = x? is uniformly

€

. T — E.
2

continuous on A = (0,1].
Example:
Let f be a real-valued function defined on A = (0,1] by;

f(x)— , VxeA=(01].
Clearly, f is continuous on A (as an exercise: show that). We will show that, f is

not uniformly continuous at A. To prove this, let € = 10 and suppose that we

could find a 0 < § < 1, to satisfy the condition of uniform continuity. Take

x =96, p—— Therefore, |x — p| = |6—— <é.

But [f(x) — f(p)| = |———| = |—— =—> 10 =€, (since 0 < 6 < 1). Thus
f is not uniformly continuous on A = (0,1].

: . 1, . :
The important point to note here, the sequence (;) is a Cauchy sequence in R,

but the sequence (f (%)) = (n) is not a Cauchy sequence in R.

Thus, if f:S = T is a continuous function on a subset A of S and (x,) is a
Cauchy sequence in A, then (f(x,,)) need not to be a Cauchy sequence in T.
Theorem:

Let f:S — T be a function from a metric space (S, ds), into a metric space
(T ,dr). If f is uniformly continuous on S and (x,,) is a Cauchy sequence in S,
then (f (x;,)) is a Cauchy sequence in T.
Proof:

Wanted: (f (x,)) is a Cauchy sequence in T. Let € > 0, wanted: N € Z* 3

dr(f(x,,), f(x,)) <€, Vmn=N.
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Since f is uniformly continuous on S and € > 0, hence 3 a § > 0 (depending
on € only) such that if x,y € A and,
ds(x,y) <6 = dT(f(x):f(Y)) < €..(*).
Since § > 0 and (x,,) is a Cauchy sequence in S, then AN € Z* 3
dr(Xm,xn) < 8,Vm,n > N.
From (*) above = d;(f(x,,,), f(x,)) < €,Vm,n > N.

(f (x;,)) is a Cauchy sequence in T.
Theorem (Heine theorem):

Let f:S — T be a function from a metric space (S, ds), into a metric space
(T ,dr). If f is continuous on a compact subset A € S, then f is uniformly
continuous on A.
Proof:
Let e > 0. Wanted: 3 a 6 > 0 (depending on €) such thatif x,p € A and,

ds(x,p) <8 = dr(f(0).f(p) <e.

Since f is continuous on A and € > 0, then,V a € A 3 a §, > 0 (depending on

a and on €) such that if x € A and;
ds(x,a) <8, = dr(f(x),f(@)) <3 ...(%)
: 8a : :
The collection {BS (a; ?) |a € A} forms an open covering of A, since;

A€ UgeaBs (4:2).

But A is compact = 3 a finite subcover of A of {BS (a; %) |a € A} , say;

o (02). B2 (022, .. e )
i.e. ACS UL, Bs (ai;%). Choose 6 = Min{%,%, ...,&%} > 0. That is, our

8a
choice of § in this case implies that § < Tk’ for all k = 1,2, ...,n and hence §

depend on € only.
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Now, we will show this § > 0 satisfy the uniform continuity condition of f. To

do this, let x and p be any two points of A with ds(x,p) < &, we need only to
show d (f(x),f(y)) < €.

. - n . Sai _ . 6ak .
Since x € A< U;-; Bs (ai,7), hence 3k =1,..,n3 x € Bs (ak’T)’ 1.€.

5 : . : : .
ds(x,a) < % Since x,p, a; € A, hence by using the triangle inequality we
have;

8a 8a 8a
dS(pJak) < dS(plx) + dS(xlak) < 6 +Tk < Tk-l—Tk = Sak-

. Sak
From (*) above, since dg(x,ay) <T<5ak and dgs(p, ay) < 8g,, hence

dT(f(x),f(ak)) < g and dT(f(p),f(ak)) < g So, the triangle inequality gives

us;

dr(f(0), () < dr(f(x), f(a) + dr(f), f () <5+ =€
= dr(f(p), f(x) <e.

Therefore, f is uniformly continuous on A.

Fixed-point theorem for contractions:
Definition:

Let f:S = S be a function from a metric space (S, dg), into itself. A point
p €S is called a fixed point of f if f(p) = p. The function f is called a
contraction of S if there is a number 0 < x < 1 (called a contraction constant),
such that, d(f (x), f(¥)) < ad(x,y), Vx,y €S ... (*)
Exercise:

Let (S,d) be a metric space. If f:S — S is a contraction of , then f:is
uniformly continuous in S .
Proof:

Let e > 0. Wanted: 3 6 > 0 (depending on €) 3 forany x,y € S;

d(x,y) < 6= d(f(x),f(y)) <e.
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Since x,y € Sand f:S — S is a contraction of S, hence;

30<x<1 3 d(f(x),f(y)) <ad(xy).

Choose § = 2 > 0. Therefore, if we suppose that;

(x,y)<é = d(f(x),f(y)) <adb= a% = €.
= d(f (x), f (y)) < € (where § depending on € only)

Therefore, f is uniformly continuous.

Theorem (Fixed-point theorem):

Let (S,d) be a complete metric space. If f:S — S is a contraction of S,
then f has a unique fixed point, i.e. there is a unique point p in S such that
f) =p.

Proof :
First of all, we show that3 p €S 3 f(p) =p.

Let x € S be any point of S and consider the sequence;

X fGLF(FE) f (F(F@)), -

This is defining a sequence (p,,) in S inductively by:
Po =%, Pny1=f(pn), n=1,2,..;
ie. po=x, p1=f(po) = f(x), P2 =f(p1) = F(f(X)), ...
Since;
d(Pn+1,Pn) = A(f () , f(Pr-1)) < @ (P, Pp-1), (since f is a contraction of S)
= a d(f (Pn-1), f (Pn-2))
< a? d((Pp-1), (Pn-2))
= a® (f Pn-2), f Pn-3))
< a® d((Pr-3), (Pn-3))
.<a" d((p1), (Po))

= d(Pn+1,Pn) < a” d(p1,po)
If we let (p1,p0) = ¢ = d(Pp+1,Pn) < a™c. Using the triangle inequality we

find, form > n;
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d(®Pm Pn) < dPn,Pn+1) + APns1,Pns2) + -+ dPm-1,Pm);
<atc+a*lc+a™™?c+--+am™

=c(a™+ a™?! +a™? +... 4+ a™Y);

=c((@™ '+ 4o +a™"™ +a"+a" + ot a) - (@ + -+ )

1-a™ 1-a®

- C(l—a 1-a

m n n m n
(Gt ) mo(m ) < G

), (the above geometric series a converge since a < 1);

1-a 1-a 1-a 1-a 1-a 1-a
an
= d(pm,pn) < c—.
. a™
= d(P,,p,) 2 0 asn - o (since a™ - 0 as n - o and hence §—>0 as

n — ). Thus, the sequence (p,,) is a Cauchy sequence in S. But S is complete
= I peESSp,—=pin S. Since f is uniformly continuous on S (as f is a
contraction of §), hence f is continuous on S. But p €S, therefore f is

continuous at p. Since p, = p in S and f is continuous at p = f(p,) = f(p),

ie. 1imLe f(pn) = f(p), but 1im,e f(Pn) =11M,0 Prs1 = p Therefore,
f(p) =p.

Finally, we need only to show that p is unique. To do this, assume p and q are
two fixed-points of f, i.e. f(p) =p and f(q) =q.

Since p,q € S and f is a contraction of S,

=23 0<a<1 3 d(f(p).f(@)<adp,9
=3 0<a<13dp,q)<adlp,q)
If we assume that, d(p,q) # 0 = a = 1(contradiction). Therefore, (p,q) = 0

= pP=q.
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